

Praise for other books by Michael W Lucas

FreeBSD Mastery: ZFS

“Once again, a great FreeBSD book to read.” — Wendy Michele,
nixCraft

“ZFS Mastery covers what everyone using or administering these
filesystems needs to know to work with them every day. It’s fascinating
to see how the system is used, having seen how it is implemented.” —
George V. Neville-Neil, co-author of “Design and Implementation of the
FreeBSD Operating System”

Networking for Systems Administrators

“There is a lot of useful information packed into this book. I
recommend it!” — Sunday Morning Linux Review, episode 145

After reading this book, you’ll have a strong footing in networking.
Lucas explains concepts in practical ways; he makes sure to teach
tools in both Unix/Linux and Windows; and he gives you the terms
you’ll use to explain what you’re seeing to the network folks. Along the
way there’s a lot of hard-won knowledge sprinkled throughout…” —
Slashdot

FreeBSD Mastery: Specialty Filesystems

“a joy and treasure to read” — Vivek Gite, nixCraft

“I’m a fan of his books… he presents them in a way that makes them
much more understandable. He has the right mix of humor and
information.” — Sunday Morning Linux Review

Sudo Mastery

“It’s awesome, it’s Lucas, it’s sudo. Buy it now.” — Slashdot

“Michael W Lucas has always been one of my favorite authors because
he brings exceptional narrative to information that has the potential
to be rather boring. Sudo Mastery is no exception.” — Chris Sanders,
author of Practical Packet Analysis

Absolute OpenBSD, 2nd Edition

“Michael Lucas has done it again.” — cryptednets.org

“After 13 years of using OpenBSD, I learned something new and
useful!” — Peter Hessler, OpenBSD Journal

“This is truly an excellent book. It’s full of essential material on
OpenBSD presented with a sense of humor and an obvious deep
knowledge of how this OS works. If you’re coming to this book from
a Unix background of any kind, you’re going to find what you need
to quickly become fluent in OpenBSD – both how it works and how
to manage it with expertise. I doubt that a better book on OpenBSD
could be written.” — Sandra Henry-Stocker, ITWorld.com

“It quickly becomes clear that Michael actually uses OpenBSD and is
not a hired gun with a set word count to satisfy... In short, this is not
a drive-by book and you will not find any hand waving.” – Michael
Dexter, callfortesting.org

DNSSEC Mastery

“When Michael descends on a topic and produces a book, you can
expect the result to contain loads of useful information, presented
along with humor and real-life anecdotes so you will want to explore
the topic in depth on your own systems.” — Peter Hansteen, author of
The Book of PF

SSH Mastery

“…one of those technical books that you wouldn’t keep on your
bookshelf. It’s one of the books that will have its bindings bent, and
many pages bookmarked sitting near the keyboard.” — Steven K Hicks,
SKH:TEC

“…SSH Mastery is a title that Unix users and system administrators
like myself will want to keep within reach…” — Peter Hansteen, author
of The Book of PF

“This stripping-down of the usual tech-book explanations gives it
the immediacy of extended documentation on the Internet. Not the
multipage how-to articles used as vehicles for advertising, but an in-
depth presentation from someone who used OpenSSH to do a number
of things, and paid attention while doing it.” — DragonFlyBSD Digest

Network Flow Analysis

“Combining a great writing style with lots of technical info, this book
provides a learning experience that’s both fun and interesting. Not too
many technical books can claim that.” — ;login: Magazine, October
2010

“This book is worth its weight in gold.” — Utahcon.com

“The book is a comparatively quick read and will come in handy when
troubleshooting and analyzing network problems.” —Dr. Dobbs

“Network Flow Analysis is a pick for any library strong in network
administration and data management. It’s the first to show system
administrators how to assess, analyze and debut a network using
flow analysis, and comes from one of the best technical writers in the
networking and security environments.” — Midwest Book Review

FreeBSD Mastery: Storage Essentials

“If you’re a FreeBSD (or Linux, or Unix) sysadmin, then you need this
book; it has a lot of hard-won knowledge, and will save your butt more
than you’ll be comfortable admitting. If you’ve read anything else by
Lucas, you also know we need him writing more books. Do the right
thing and buy this now.” — Slashdot

“There’s plenty of coverage of GEOM, GELI, GDBE, and the other
technologies specific to FreeBSD. I for one did not know how GEOM
worked, with its consumer/producer model – and I imagine it’s
complex to dive into when you’ve got a broken machine next to you. If
you are administering FreeBSD systems, especially ones that deal with
dedicated storage, you will find this useful.” — DragonFlyBSD Digest

Absolute FreeBSD, 2nd Edition

“I am happy to say that Michael Lucas is probably the best
system administration author I’ve read. I am amazed that he can
communicate top-notch content with a sense of humor, while not
offending the reader or sounding stupid. When was the last time you
could physically feel yourself getting smarter while reading a book? If
you are a beginning to average FreeBSD user, Absolute FreeBSD 2nd
Ed (AF2E) will deliver that sensation in spades. Even more advanced
users will find plenty to enjoy.” — Richard Bejtlich, CSO, MANDIANT,
and TaoSecurity blogger

“Master practitioner Lucas organizes features and functions to make
sense in the development environment, and so provides aid and
comfort to new users, novices, and those with significant experience
alike.” — SciTech Book News

“…reads well as the author has a very conversational tone, while giving
you more than enough information on the topic at hand. He drops
in jokes and honest truths, as if you were talking to him in a bar.” —
Technology and Me Blog

Cisco Routers for the Desperate, 2nd Edition

“If only Cisco Routers for the Desperate had been on my bookshelf
a few years ago! It would have definitely saved me many hours of
searching for configuration help on my Cisco routers.” — Blogcritics
Magazine

“For me, reading this book was like having one of the guys in my
company who lives and breathes Cisco sitting down with me for a day
and explaining everything I need to know to handle problems or issues
likely to come my way. There may be many additional things I could
potentially learn about my Cisco switches, but likely few I’m likely to
encounter in my environment.” — IT World

“This really ought to be the book inside every Cisco Router box for the
very slim chance things go goofy and help is needed ‘right now.’“ —
MacCompanion

Absolute OpenBSD

“My current favorite is Absolute OpenBSD: Unix for the Practical
Paranoid by Michael W. Lucas from No Starch Press. Anyone should
be able to read this book, download OpenBSD, and get it running as
quickly as possible.” — Infoworld

“I recommend Absolute OpenBSD to all programmers and
administrators working with the OpenBSD operating system (OS), or
considering it.” — UnixReview

“Absolute OpenBSD by Michael Lucas is a broad and mostly gentle
introduction into the world of the OpenBSD operating system. It is
sufficiently complete and deep to give someone new to OpenBSD
a solid footing for doing real work and the mental tools for further
exploration… The potentially boring topic of systems administration
is made very readable and even fun by the light tone that Lucas uses.”
— Chris Palmer, President, San Francisco OpenBSD Users Group

PGP & GPG

“...The World’s first user-friendly book on email privacy...unless you’re
a cryptographer, or never use email, you should read this book.” — Len
Sassaman, CodeCon Founder

“An excellent book that shows the end-user in an easy to read and
often entertaining style just about everything they need to know to
effectively and properly use PGP and OpenPGP.” — Slashdot

“PGP & GPG is another excellent book by Michael Lucas. I thoroughly
enjoyed his other books due to their content and style. PGP & GPG
continues in this fine tradition. If you are trying to learn how to use
PGP or GPG, or at least want to ensure you are using them properly,
read PGP & GPG.” — TaoSecurity

Tarsnap Mastery

“If you use any nix-type system, and need offsite backups, then you
need Tarsnap. If you want to use Tarsnap efficiently, you need Tarsnap
Mastery.” –Sunday Morning Linux Review episode 148

“This book is a great way to feel confident about backing up your data
securely in cloud or through off-site backups, without compromising
security or burning your pocket with enterprise grade products from
IT vendors.” — Wendy Michele, nixCraft

PAM Mastery

Michael W Lucas

PAM Mastery
Copyright 2016 by Michael W Lucas (https://www.michaelwlucas.com).
All rights reserved.

Author: Michael W Lucas
Copyediting: Lindy Lou Losh
Cover art: Sysadmin Gothic, by Eddie Sharam, after Grant Wood’s American Gothic

ISBN-13: 978-1537657707
ISBN-10: 1537657704

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording,
smoke signals, or by any information storage or retrieval system, without the prior
written permission of the copyright holder and the publisher. For information on
book distribution, translations, or other rights, please contact Tilted Windmill Press
(accounts@tiltedwindmillpress.com)

The information in this book is provided on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this work, neither the
author nor Tilted Windmill Press shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in it.

Tilted Windmill Press
https://www.tiltedwindmillpress.com

PAM Mastery

Michael W Lucas

Brief Contents

Acknowledgements...XXI

Chapter 0: Introduction...1

Chapter 1: PAM Components...19

Chapter 2: Common Modules..39

Chapter 3: PAM Items, Codes, and Functions...................................49

Chapter 4: Linux-PAM Extended Controls and Substacks...............61

Chapter 5: Popular Linux-PAM Modules...67

Chapter 6: PAM Debugging..81

Chapter 7: Arbitrary Files and Random Programs............................87

Chapter 8: SSH Agent Authentication...101

Chapter 9: One-Time Passwords: Google Authenticator................107

Chapter 10: Console Access with SSH Keys.....................................123

Chapter 11: Password Quality Checks...137

Afterword..151

Sponsors...153

Complete Contents
Acknowledgements...XXI

Chapter 0: Introduction...1
Prerequisites and Results..2
What is Authentication?...3
Multi-Factor Authentication...3
Why PAM?...4
PAM Limitations...6
PAM Implementations...7

PAM Variances...9
PAM Commonalities...10

PAM Management Tools..11
Target Platforms..11

CentOS..12
Debian...12
FreeBSD...13
Other Platforms...13

PAM and OpenSSH..13
PAM, LDAP, and Kerberos..15
Book Overview..16

Chapter 1: PAM Components...19
PAM Configuration Files...19
PAM Policies..20
Authentication Types..21
PAM Controls..23

Required..24
Requisite..25
Optional..26
Sufficient..28
Binding..29
Include...30

Modules and Arguments..32
Module Context...32
Module Arguments..32

Common Module Arguments...33
debug...33
no_warn..34
use_first_pass...34
try_first_pass..35
use_mapped_pass..35
expose_account..35

Default Policies..35
Policy Processing and Results..36

Chapter 2: Common Modules..39
Core Unix Authentication: pam_unix..39

Detailed Logging with audit...40
Empty Passwords...40
Password File Configuration..41

Group Membership..42
Other pam_unix Options...43

Allowing and Denying Requests...44
pam_deny...44
pam_permit..44

Allowing Root..45
Secure Terminals...45
Login Accounting..46
Preventing Logins...47

Chapter 3: PAM Items, Codes, and Functions...................................49
PAM Items..49

PAM_SERVICE..50
PAM_USER..51
PAM_RUSER..51
PAM_TTY..51
PAM_HOST...51
PAM_RHOST...51
PAM_CONV..52
PAM_AUTHTOK..52
PAM_OLDAUTHTOK...52
PAM_USER_PROMPT...52
PAM_AUTHTOK_PROMPT..52

PAM_OLDAUTHTOK_PROMPT...52
PAM_SM_FUNCTION..52
PAM_TYPE..52

Reading Items with pam_exec...53
PAM Return Codes...54

PAM_SUCCESS (0)...55
PAM_SERVICE_ERR (3)...56
PAM_SYSTEM_ERR (4)...56
PAM_PERM_DENIED (7)...56
PAM_MAXTRIES (8)...56
PAM_AUTH_ERR (9)..56
PAM_NEW_AUTHTOK_REQD (10)..56
PAM_USER_UNKNOWN (13)..56
PAM_IGNORE (25)..56

Functions..57
PAM Setup and Resources..57
Authentication Functions...58
Account, Session, and Password Functions..................................58
PAM Service Functions...58

Chapter 4: Linux-PAM Extended Controls and Substacks...............61
Extended Controls..61

Extended Control Actions..62
Standard Controls in Extended Format..64

Substacks..65

Chapter 5: Popular Linux-PAM Modules...67
Popular OpenPAM Modules...67
User Environment: pam_env...67

pam_env Configuration..68
System Environment...69
User Environments..70
pam_env and Security...70

Conditional Success: pam_succeed_if..71
String Comparisons...71
Numerical Comparisons...72
List Comparisons...73
User Group Membership..73

Conditional Rule Processing..73
Pam_succeed_if Options..74

Local Users...74
Limiting User Resources: pam_limits..75

Limit Domains...76
Limit Type...77
Limit Items and Values..78

PAM and Systemd...80

Chapter 6: PAM Debugging..81
PAM Logging...82
Debugging with pam_echo..82

Using pam_echo..82
pam_echo Items...83
Linux-PAM Message Files..84

Debugging with pam_exec..85
Debugging with pam_warn...85

Chapter 7: Arbitrary Files and Random Programs............................87
Checking Files: pam_listfile...87

Pam_listfile Items...88
Pam_listfile Sense and File...90
Pam_listfile Errors...90
Pam_listfile and Changing Usernames...91
OpenPAM versus pam_listfile...91

Running Programs: pam_exec..92
Configuring pam_exec..92
Implementing pam_listfile in pam_exec......................................93
Pam_exec versus Modules..94

OpenPAM pam_exec..94
Linux-PAM pam_exec..95
PAM versus SELinux..96

Is It SELinux?..96
Creating an SELinux Policy..98
SELinux and pam_mkhomedir..99

Chapter 8: SSH Agent Authentication...101
Installing pam_ssh_agent_auth...102
Configuring pam_ssh_agent_auth...102

Locating authorized_keys ..102
Key File Ownership...104
Other Options..104

Configuring sudo..104
Pam_ssh_agent_auth and PAM..105

Chapter 9: One-Time Passwords: Google Authenticator................107
Installing Google Authenticator..109
Google Authenticator User Features..110

Passcode Types...110
File Management...111
Timing and Rate Limiting..111

GA User Configuration..112
Device Software..112
User Configuration..113
Scripting User Setup..115

GA and PAM...116
Central GA Management...116

Time Skew Adjustment...118
Passcode Display..119
Simultaneous Passcode and Password Entry.............................119

New Devices..120
Disaster Recovery..120
GA File Format..121

Chapter 10: Console Access with SSH Keys.....................................123
One Module, Different Policies...124

FreeBSD and pam_ssh..125
Debian and pam_ssh...126
Comparison..128

SSH and pam_ssh..129
FreeBSD pam_ssh...131

OpenPAM SSH Agent...131
Key Selection..132

CentOS pam_ssh...132

CentOS pam_ssh Login Prompt..133
Choosing Key Files..134

Debian pam_ssh..134
Debian pam_ssh Key Selection..134
Bypassing Passwords...135

Chapter 11: Password Quality Checks...137
Configuring Password Checks..138
Password Rotation..138
Quality Concepts...139

Character Classes...139
Maximum Password Length...139

pam_passwdqc..140
Enabling and Configuring..140
pam_passwdqc Complexity and Length.....................................141
Passphrases...143
Password Similarity...144

pam_pwquality..144
Common pam_pwquality Configuration & Behavior..............145
Setting Password Requirements...146
Password Quality Credits...147
Common Options..149

Afterword..151

Sponsors...153

XIX

Acknowledgements
As always, I need to thank the technical reviewers who offered feed-
back on earlier drafts of this book: Bryan Irvine, Kurt Mosiejczuk,
Mike O’Connor, and Carsten Strotmann. Special thanks go to Dag-Er-
ling Smørgrav—the one-man army responsible for OpenPAM—who
took time out of his busy schedule to educate me on some PAM funda-
mentals.

I also need to thank my horde of Twitter followers, who run many
more operating systems than I believed were still in use, and cheerfully
offered their particularly horrible PAM configurations for my edifica-
tion.

All testing and research was done on servers from the generous
folks at iX Systems, who have offered their support for my work for the
last decade or so. The least I can do is thank them too.

Finally I’d like to thank the world, for letting me pretend that
rsh(1), pam_rhosts, and their surrounding ecosystem do not exist.

For Liz.

1

Chapter 0: Introduction
Authentication on Unix-like systems is perhaps the closest thing sys-
admins have to black magic.

Every sysadmin has heard of Pluggable Authentication Modules,
or PAM. We all know that the files in /etc/pam.d/ dictate how most
software authenticates. If you want to use public key authentication, or
authenticate with physical tokens, or rely only on passwords, you have
to muck around in those files. Usually, sysadmins blindly follow the
instructions and hope nothing terrible happens.

PAM policies are not exactly like anything else in systems admin-
istration. A set of PAM statements isn’t processed like a set of packet
filter rules or a shared library path, except when it is. Plus, PAM uses
strange words like “requisite,” and the word “sufficient” apparently
means anything but “enough.”

And when you break PAM, you break a whole service. Most
services are hard enough to get running in the first place, so breaking
them is discouraged. Hopefully it’s not the service that lets you log in
to the machine.

PAM doesn’t have to be black magic, however. Enabling Google
Authenticator doesn’t absolutely require sacrificing a black cockerel on
the thirteenth full moon of the year with a knife freshly forged from
matrilineally inherited silver. All you need are your sysadmin skills
and this book.

Chapter 0: Introduction

2

Prerequisites and Results

PAM Mastery is written for systems administrators of moderate expe-
rience. You need to understand managing shared libraries, installing
and removing software, and troubleshooting your preferred platforms.

Not all platforms have packages for all of the modules discussed.
Using these modules requires building them from source code. While
I’ll give basic instructions on compiling modules, those instructions
assume that you’ve compiled software before and understand how
your platform’s compiler behaves. On CentOS, you’ll need the “Devel-
opment Tools” package group and the pam-devel package. On Debi-
an you’ll need the build-essentials and libpam0g-dev packages. The
FreeBSD ports system contains all of the modules this book discusses.

This book focuses on cross-platform solutions, especially for edu-
cational purposes. Perhaps your Unix-like system has a PAM module
for exactly a specific task. I’ll occasionally mention such modules as
we go, but pay most attention to modules used by multiple operating
systems.

You’ll also need systems to test on. The nice thing about exper-
imenting with PAM is that system requirements are minimal. Vir-
tual machines are perfectly suitable for testing PAM. If you’re trying
something like using pam_exec to spawn a Perl process to manage
authentication, you’ll want to perform load testing before deploying in
production.

What will you get out of all of this? This book won’t teach you the
in-depth details of PAM on your preferred platform. It will teach you
how to think about PAM, how the policies and modules work, and
how to explore and master your preferred operating system’s PAM im-
plementation. You’ll also carry the expertise gained here to any other
PAM-using operating system.

Chapter 0: Introduction

3

What is Authentication?

Various security and computing bodies have redefined “authentica-
tion” to best suit their own needs. If you dig into security theory, you’ll
stumble across the term Authentication, Authorization, and Accounting
(AAA). Management Information Systems documents might focus on
resource control, while sysadmins only care about matching the user-
name and the password.

For purposes of PAM, authentication means validating a user’s cre-
dentials and establishing service for people who provide those creden-
tials. The security experts who use the AAA terminology will tell you
that PAM pulls all those roles together. Which it does. PAM also lets
you configure different modules and services for the various compo-
nents of AAA, however.

PAM not only verifies authentication credentials. It can arrange
home directories, log access, enable services, and more. PAM inte-
grates system services with authentication.

If you’re accustomed to the term Identification, Authentication,
and Authorization (IAA), you should know that PAM does not handle
identification. Systems that rely on PAM normally use Name Service
Switch (NSS) to manage identification. NSS also originated with Solar-
is, and predates PAM by a few years. The lack of integration between
NSS and PAM has caused a continuous migraine for Unix-like systems
ever since.

Multi-Factor Authentication

The phrase two-factor authentication gets batted around quite a bit.
You can use PAM to implement two-factor authentication or, indeed,
multi-factor authentication. The obvious question becomes: what is an
authentication factor?

Chapter 0: Introduction

4

Authentication is based on one of three user characteristics: some-
thing they have, something they know, or something they are. “Some-
thing they have” refers to a physical token, such as a hardware security
token or a cell phone tied to a specific phone number. These physical
items are easily lost or broken. “Something they know” is a secret, such
as a password—and we all know that passwords get written on sticky
notes and attached to the monitor. “Something they are”— including
biometric factors such as a fingerprint, an iris scan, or a gene scan—
might seem best. But biometric data can be stolen. Changing your iris
scan pattern in response to that theft is beyond the scope of this book.

Multi-factor authentication requires two or more of these factors.
Maybe you need a security token and a particular cellphone and a
password and a fingerprint. An intruder can capture any one of these
without too much trouble, but grabbing every necessary piece is expo-
nentially more difficult.

The second half of this book includes several PAM modules that
add an authentication factor, such as Google Authenticator (Chapter
9) or used for specific purposes, like the pam_passwdqc password
quality checker (Chapter 11).

Why PAM?
If Pluggable Authentication Modules are such a pain, why use them?

Because most of the alternatives are worse.
In the early days of computing, every program needed separate

configuration to support any desired authentication methods. If you
wanted a new workstation to match the standards demanded by your
enterprise network, you needed to adjust every program on that work-
station. Some of those programs needed configuration file changes,
while others demanded full-out recompiling. No software or operating
system supported all authentication methods. And if you wanted to do
something even a little different… good luck!

Chapter 0: Introduction

5

In 1995, Sun Microsystems proposed a standard cross-platform,
cross-program authentication interface. Software adopting this inter-
face could utilize any authentication program offering that interface. If
you wanted a new authentication mechanism for such programs, you
could write it to attach to this interface and just plug it in to all your
software. Hence, Pluggable Authentication Modules, or PAM.

PAM modules are chunks of code that implement a specific authen-
tication method. You want to provide authentication with a username
and password? That’s a module. Via a hardware token? That’s a mod-
ule. Via gene scans, breathalyzer test, and a Dance Dance Revolution
platform? Those would all be modules, too, if such things existed. (In
an effort to be platform-agnostic, this book uses those three modules
in many examples.1) Modules are shared libraries, dynamically linked
into the main program as configured. Yes, the phrase “PAM module” is
redundant, but that’s what sysadmins call them, and I already have too
many battles to fight to take this on.

Software that uses PAM receives authentication requests. The pro-
gram hands each request off to the configured authentication modules,
which tell the server if it should allow the authentication request or
not.

Today, PAM is the most widely used authentication standard for
Unix-like systems. It’s overwhelmingly popular in the Linux world, as
well as Solaris-based and BSD systems. Even Apple’s OS X uses PAM,
as well as commercial UNIX systems like AIX and HP-UX.

1	 I wanted to use pam_hipster.so as a sample module, but it
requires an artisan compiler that runs only on this one fascinating
architecture. Plus, the code is only available via punch cards from this
one guy who works at the custom bicycle shop down the road.

Chapter 0: Introduction

6

Strictly speaking, PAM is not an officially accepted standard.
No Grand Certifying Body has placed its stamp on a set of PAM
definitions and protocols and declared them the One True PAM
Specification. The Common Desktop Environment (CDE) included
PAM, and CDE became a standard back in the 1990s, so PAM does
get referenced in various standards documents. Most modern PAM
implementations are based on a draft specification from an attempt
in 1997 to include PAM in the Portable Operating System Interface
(POSIX). If you really want to dive into PAM, check out the document
X/Open Single Sign-on Service (XSSO) – Pluggable Authentication
Modules, available from a whole bunch of Internet sites, including
http://pubs.opengroup.org. People have tried to standardize PAM
since then, but all attempts have failed.

The absence of a formal standard means that PAM also lacks a
formally defined language. Depending on which documentation you
read, a group of rules might be a chain or a stack or a policy. A com-
ponent of the authentication process might be a type or a facility or a
whatsit. In this book I give the most common terms for each compo-
nent, then choose a single word to be used for that component. The
fact that I use a specific word to refer to a part of PAM doesn’t mean
that all the other choices are invalid; it only means that you lot need
consistency if you’re to understand this gobbledygook.

PAM Limitations

PAM is the most widely used authentication system, but its limitations
make it unsuitable for some applications.

The biggest drawback to PAM is that a PAM module can’t interact
directly with clients. The server program is an intermediary between
the PAM module and the client, and any interaction between the mod-
ule and client is limited to that offered by the standard PAM interface.

Chapter 0: Introduction

7

Some authentication protocols, like Kerberos, include a whole sweep-
ing array of client-server interactions that far exceed what PAM
can support. In Kerberos, PAM is a bottleneck. While you can use
PAM modules to support Kerberos, you cannot implement Kerberos
through PAM. This is also why SSH handles most of its authentication
outside PAM (although it can leverage PAM if you decide so).

This limitation is why people created other authentication proto-
cols, such as Simple Authentication and Security Layer (SASL) and the
Generic Security Services API (GSSAPI), plus all the tools and services
that have evolved around these.

Not all operating systems use PAM. Notably, OpenBSD uses BSD
Authentication, which spins authentication requests off into separate
processes rather than dynamically linked libraries. BSD authentication
separates privileges more widely than PAM, and hence reduces securi-
ty risk, but is not as flexible nor as widely used.

If you want a taste of authentication administration before PAM,
though, consider the variety of work needed to implement and deploy
Kerberos in all your server software. While these applications all hook
to a common Kerberos domain, you configure each in a completely
different manner. Now imagine that, multiplied by all the authentica-
tion protocols used today, and all the interactions of those protocols
with all the different software. PAM looks better now, doesn’t it?

PAM Implementations

While anyone can implement PAM, you’ll most commonly encoun-
ter three specific versions: Solaris, Linux-PAM, and OpenPAM. The
different versions are almost compatible.2

2	 “Almost compatible” means that anyone supporting more
than one version will usually have little trouble, but occasionally subtle
differences will ruin their cherub-like demeanor.

Chapter 0: Introduction

8

Sun first proposed PAM, and Sun Solaris had the very first imple-
mentation. The PAM code from Solaris found its way into the open
source OpenSolaris, where it irrevocably became part of the public
source code ecosystem. Oracle purchased Sun and no longer public-
ly releases any updates to the Solaris code, but community projects
like OpenIndiana maintain and update a public version Solaris PAM.
While other PAM implementers based their modules on Sun’s orig-
inal work, Sun eliminated those modules in in favor of entirely new
modules. This means that the modules and configurations that appear
in Linux and BSD systems, while based on Sun’s work, bear no resem-
blance to what currently ships with Solaris PAM systems.

Linux-PAM is the Pluggable Authentication Modules implementa-
tion used for most Linux systems. It pretty closely follows the original
Sun model, and many of the PAM modules keep the same names and
functions of that primordial implementation. It’s mostly, but not en-
tirely, compatible with Solaris PAM. You’ll find Linux-PAM primarily
in Linux systems, but it also appears in some commercial Unix vari-
ants.3 Sadly, different Linux distributions often use slightly different
versions of Linux-PAM.

The author of OpenPAM attempted to include the most important
parts of Linux-PAM, Solaris PAM, and the proposed XSSO standards.
OpenPAM originates with the FreeBSD community. OpenPAM itself
includes very few modules, but what most people call OpenPAM is
really “OpenPAM and a selection of modules culled from FreeBSD.”
BSD-based systems that use PAM all use OpenPAM. OpenPAM’s stan-
dard modules resemble those of Linux-PAM and original Solaris.

3	 To make an SGI sysadmin scream and gibber, say “Hey, re-
member IRIX’s two incompatible PAM stacks? Good times!”

Chapter 0: Introduction

9

While OS X uses OpenPAM, Apple doesn’t use the common PAM
modules. Instead, they’ve written their own PAM modules to better
integrate with the One True Apple way.

Commercial UNIX systems usually have their own PAM imple-
mentation that behaves the way the vendor prefers. IBM’s AIX, for
example, uses the standard PAM policies but calls the pam_aix module
almost everywhere. (AIX PAM is also implemented atop their propri-
etary Loadable Authentication Module system, because it’s IBM.)

PAM Variances

Both CentOS and Debian use Linux-PAM. Sadly, they use slightly
different versions of Linux-PAM. Each distribution’s designers select
features and modules that make sense for them. The result is, CentOS
Linux-PAM includes features and options not found in Debian Li-
nux-PAM, and vice versa. I’ll mention some of those differences as we
encounter them. When in doubt, consult your Linux documentation
to see what toys you get.

Additionally, Linux-PAM and OpenPAM use PAM differently,
because they support operating systems with different designs. For
example, Linux-PAM can change the encryption algorithm used for
storing new passwords. BSD and older Sun systems handle password
encryption algorithms with login classes, so OpenPAM doesn’t include
that feature. I’ll point out those differences as we go.

Linux-PAM has more knobs and buttons than OpenPAM. Part
of this is because Linux-PAM needs features that OpenPAM puts
elsewhere, but it also appears that the Linux-PAM developers have a
fondness for extra knobs and buttons. In an effort to keep you from
twiddling buttons best left alone, this book gives Linux-PAM a little
more attention than OpenPAM.

Chapter 0: Introduction

10

While operating system vendors could coordinate their PAM con-
figurations and come up with something that every sysadmin could
immediately recognize and use, nobody’s likely to do that. Instead, ev-
ery open source platform welcomes other OS packagers to copy their
obviously superior design. Therefore, every platform configures PAM
differently.

When you first dive into an operating system’s PAM setup, allocate
time to understanding just how the packagers assembled everything.
It’s very easy to assume that the people who designed the PAM poli-
cies for an unfamiliar operating system are insane. Easy, but counter-
productive. Study these unfamiliar configurations and figure out why
they’re put together that way. Not only will you understand the PAM
implementation, but you’ll gain insight into how the operating system
packagers think—and that insight will help you master the rest of the
system.

Chapter 10 illustrates how each of our three reference platforms
can use one PAM module in entirely different ways, for reasons that
make perfect sense to the operating system packagers.

PAM Commonalities

All these different implementations share common structure and
configuration syntax. Maybe you won’t initially understand why
Debian puts a “deny all authentication” rule near the top of its default
system-wide configuration, but you’ll understand the syntax of the
policies and be able to puzzle it out. Most PAM implementations share
common module names, with a few exceptions I’ll note.

One thing that every implementation and operating system instal-
lation has in common is: they have bugs. As I write this, the long-stan-
dard pam_mkhomedir module chokes and dies on CentOS. (Red Hat
has reasons for this, and Chapter 6 shows how to work around it.)

Chapter 0: Introduction

11

The options use_first_pass and try_first_pass fail on pam_unix on
FreeBSD. Always read the operating system documentation, and if
something seems weird, check the mailing list archives and discussion
boards for other people with the same problem. If you truly under-
stand the numerous bugs in your preferred PAM implementation, you
won’t feel like laughing at the bugs in other versions.

PAM Management Tools

Some Linux distributions provide tools to manage PAM. These tools
allow you to change authentication methods without editing the nasty
configuration files. They work for many simple deployments. But if
you want to figure out why your system behaves in a certain way, or if
you want to do something complicated, these tools limit you to sce-
narios the tool authors imagined. And understanding weird behavior
absolutely requires understanding how the rules work, both as stand-
alone statements and as components of a policy.

These add-on tools overwrite the existing PAM configurations.
You must either learn to compel these tools to create the needed
configuration, or abandon them and manage authentication manually.
In either case, understanding the configuration makes you a better
sysadmin.

Target Platforms

This book mostly covers PAM as it’s deployed in average Linux and
BSD versions. The material on how PAM processes policies is also
applicable to Oracle Solaris, OpenSolaris-derived systems, OS X, and
proprietary UNIX systems, but these systems use very different core
PAM modules. You can add many of the PAM modules I’ll discuss to
these systems, but you’ll have to carefully study the configuration files.

Chapter 0: Introduction

12

I specifically target three operating systems with three different
configuration styles: CentOS, Debian, and FreeBSD.

CentOS

CentOS is a representative of the Red Hat Linux branch of Linux. This
book uses CentOS rather than official Red Hat Linux because CentOS
is free and I’m a cheapskate. CentOS uses Linux-PAM. Many Linux
distributions are built on top of Red Hat Linux, and those derivatives
should be able to use CentOS PAM configurations.

Some PAM modules covered herein are in the EPEL package
repository. To use those modules you’ll need to enable that repository,
build your own packages, or make other arrangements.

CentOS and related Linux distributions provide a command-line
tool to configure PAM, authconfig(8).

Debian

The Debian branch of Linux has a different design philosophy than
the Red Hat Linux branch. It supports much of the same software,
but the management interface is almost completely different. Debian
uses Linux-PAM. Many Linux distributions, such as Ubuntu and Kali
Linux, are built on top of Debian, and should be able to use Debian
configurations.

Some PAM modules discussed in this book are in the experimental
package repository. You’ll need to either enable that repo or build your
own packages.

Like CentOS, Debian includes an add-on tool that writes
PAM configuration files for you. Unlike CentOS, Debian uses
pam-auth-update(8), a tool written by Debian folks specifically for
Debian.

Chapter 0: Introduction

13

FreeBSD

FreeBSD is our OpenPAM reference platform. PAM-capable BSD plat-
forms, such as Dragonfly and NetBSD, use OpenPAM, as does Apple’s
OS X. Configurations that work on FreeBSD should work on any BSD
platform except OS X. (OS X uses completely different PAM modules
than any other OpenPAM implementation, making it a special case for
almost everything.)

A few Linux distributions use OpenPAM, or permit easily replac-
ing their chosen PAM implementation with the other. You’ll configure
these operating systems much like any other PAM implementation,
but you might find some PAM modules have slightly different names.
If you’re using a Linux distribution with OpenPAM and get confused
looking for a module, check the CentOS or Debian examples to find
the name the Linux folks assign to that module.

Other Platforms

PAM might not be a monolithic standard, but the basics of its config-
uration are common across implementations. Sysadmins managing
Solaris derivatives or OS X can use the guidance in here to create their
own PAM configurations.

Much of the guidance on add-on PAM modules, such as Google
Authenticator or SSH agent authentication, applies directly to every
platform. The details of configuring a password quality checker don’t
vary much between operating systems, even if where you place that
module in a policy differs.

PAM and OpenSSH

OpenSSH’s SSH server sshd(8) doesn’t really need PAM. The industry
standard method for SSH authentication—keys—doesn’t fit within
PAM. The SSH server does need to check passwords, which does in-

Chapter 0: Introduction

14

volve PAM somewhere along the way, but it’s a simple-minded check.
If you’re using one-factor authentication, the simple password check
works just fine.

If you want more complicated PAM-based authentication, though,
start by telling sshd(8) to link with PAM. Set the UsePAM option in
sshd_config to yes. This enables PAM-based account access checks,
automatic home directory completion, and so on. It will not trigger
PAM-based authentication, however.

The SSH daemon has two options for handling user authentication
at the keyboard. One, PasswordAuthentication, is specifically for
passwords. The other, ChallengeResponseAuthentication, is
a more generic authentication mechanism. To use PAM, you almost
certainly want ChallengeResponseAuthentication.

UsePAM yes

ChallengeResponseAuthentication yes

PasswordAuthentication no

Console and serial port login attempts use the login(8) program,
which has its own PAM policy. The SSH server can pass part of the
user login process to login(8) with the UseLogin option. This option
is normally no. Interactions between login(8) and sshd(8) policies are
either highly amusing or utterly infuriating, depending on if you’re
the one who needs to make them work. To use PAM, it’s best to let the
SSH server handle the login process rather than calling up login(8).

UseLogin no

Finally, tell sshd(8) to consult with PAM on authentication. For
that, you need the AuthenticationMethods option in sshd_config.
The keyboard-interactive setting tells sshd to pass authenti-
cation through to another agent, such as PAM. If you activate PAM
and you tell sshd(8) to use keyboard-interactive authentication,
you’ll get PAM for authentication as well as account management.

Chapter 0: Introduction

15

Setting it to publickey means sshd requires public key authenti-
cation. Combining the two with a comma means that sshd requires
both, while separating them with a space means sshd offers a choice
of authentication options.

Most people who want to enable PAM in sshd(8) want the daemon
to reject all authentication requests without a public key, and then give
PAM a chance to either permit or veto the connection. That gives you
an AuthenticationMethods entry like this.

AuthenticationMethods publickey,keyboard-interactive

Alternatively, you might want to let users with public key authen-
tication right in, and then fall back to PAM for one-time passwords or
some other strong authentication. Put a space between the methods.

AuthenticationMethods publickey keyboard-interactive

Even with these options, not all PAM modules work with sshd.
Plugging pam_ssh_agent_auth (Chapter 8) into sshd, as amusing as
that might sound, will only annoy you.

PAM, LDAP, and Kerberos

Any time sysadmins ponder authentication, the topic of centralized
authentication comes up. Most of these discussions wind up with var-
ious permutations of Lightweight Directory Access Protocol (LDAP)
and Kerberos. Will this book help you with these?

Yes… and no.
The difficulty of deploying LDAP has very little to do with PAM.

Configuring LDAP authentication is hard because LDAP is so wildly
free-form. You can use any number of LDAP schemas or create your
own. Decisions made early in your LDAP deployment have reper-
cussions that you’ll live with forever. Worse, differences between the
LDAP modules on each of our reference platforms mean that each
platform needs a unique configuration.

Chapter 0: Introduction

16

Kerberos is less free-form than LDAP, but it has very specific re-
quirements and higher overhead.

This book will help you understand how your PAM configura-
tion affects these centralized authentication methods. It will help you
extract debugging information from PAM as you deploy. It won’t help
you decide how to design your LDAP schema.

Book Overview

This book has two big pieces. The first six chapters guide you through
how PAM works.

Chapter 0 is this introduction.
Chapter 1, “PAM Components,” discusses the parts of PAM. You’ll

learn about PAM configuration files and statements, the control state-
ments, PAM modules, and common flags. We’ll also explore how PAM
policies work, and how PAM decides to allow or reject requests.

Chapter 2, “Common Modules,” covers modules everyone needs
to understand, such as those used for traditional Unix authentication,
permitting root to access services, accounting, and more.

Chapter 3, “PAM Items, Codes, and Functions,” dives into some
PAM internals. A sysadmin doesn’t need to program PAM, but does
need to recognize these codes when they show up. Understanding
PAM items and return codes is critical to managing PAM.

Chapter 4, “Linux-PAM Extended Controls and Substacks,” dis-
cusses Linux-PAM extensions to PAM configuration, such as substacks
and making decisions based on specific PAM responses.

Chapter 5, “Popular Linux-PAM Modules,” goes into detail on
modules usually deployed in Linux-PAM systems. Linux configures
features in PAM that other systems place elsewhere.

Chapter 6, “PAM Debugging,” shows how to find problems in your
PAM configuration.

Chapter 0: Introduction

17

With these six chapters, you can perform essential configuration
tasks and debugging. The remainder of the book takes you into spe-
cific modules. A trivial Internet search uncovers hundreds of PAM
modules, but this book covers only a few. Some of them are very
widely available and very useful, such as pam_exec (Chapter 7). Some
are popular, such as pam_ssh_agent_auth (Chapter 8) and Google Au-
thenticator (Chapter 9). Some let me illustrate important points about
PAM. The module pam_ssh (Chapter 10) not only illustrates a useful
feature, but also serves as a case study on the infuriating differences in
how operating systems deploy identical PAM modules.

This still leaves hundreds of PAM modules. Many PAM modules
are vital to the people who need them, but only a fraction of readers
need any given module. This book gives you enough understanding of
PAM to feel assured of your ability to write correct rules for using that
module, freeing your precious brainpower to understand the module
itself and how that module fits into a policy.

Chapter 7, “Arbitrary Files and Random Programs,” discusses
permitting access based on a text list. You also learn about running
external programs as part of PAM.

Chapter 8, “SSH Agent Authentication,” covers using your SSH
agent to authenticate to services after logging onto the system.

Chapter 9, “One-Time Passwords: Google Authenticator,” helps
you implement time-based, one-time passwords (TOTP) using Goo-
gle’s PAM module and a variety of client software.

Chapter 10, “Console Access with SSH Keys,” teaches you how to
configure a workstation so users can use their SSH keys as part of the
local authentication process.

Chapter 11, “Password Quality Checks,” discusses using PAM
modules to limit passwords users can choose.

Grab your flashlight. We’re going into PAM.

19

Chapter 1: PAM Components
Any PAM system handles the login and authentication process with
several types of rules. We’ll start with the configuration files that con-
tain the rules, then dive into the authentication components and the
actions.

PAM Configuration Files

You might find PAM configurations in the file /etc/pam.conf, or in a
whole mess of files in the /etc/pam.d/ directory.

When Solaris spawned PAM back in the 1990s, a single configu-
ration file sufficed for the few services that used PAM. Each PAM rule
statement started with the name of the service that rule applied to. The
rules for access to rlogind(8) started with rsh, the rules managing
telnet access started with telnet, and so on. Solaris-derived systems
still use a single pam.conf.

PAM spread like bindweed, though. Before long, the single con-
figuration file constrained and complicated systems administration.
Implementations like Linux-PAM and OpenPAM split PAM rules out
into the /etc/pam.d directory, where each service had a file named
after it. Instead of starting a rule with the word rlogin, Linux-PAM
and OpenPAM put the rules for rlogind(8) in /etc/pam.d/rsh, the
rules for SSH access in /etc/pam.d/sshd, and so on.

Chapter 1: PAM Components

20

FreeBSD systems also separate configuring core system compo-
nents and add-on packages. While the PAM configurations for system
components live in /etc/pam.d, add-on packages have their PAM con-
figurations in /usr/local/etc/pam.d. You might find similar variations
in other operating systems.

Systems that use /etc/pam.d are far more common than those
relying on /etc/pam.conf. The examples in this book assume you’re
using per-service PAM configuration files. If you’re on a Solaris-based
system, you’ll need to add the service name to the front of every PAM
rule in /etc/pam.conf.

PAM Policies

If you’ve never looked at a PAM file, go look at one of the files in
/etc/pam.d/. A policy file has a bunch of statements like this.
auth required pam_unix.so no_warn try_first_pass nullok
account required pam_unix.so
session required pam_lastlog.so no_fail
password required pam_unix.so no_warn try_first_pass

Each line is one PAM statement or rule. Each statement contains
four components: the type, the control, the module, and the module
arguments. The first PAM statement shown here has the type auth,
the control required, the module pam_unix.so, and the arguments
no_warn, try_first_pass, and nullok.

We’ll go over each of these in detail, but understanding the basics
of each will help you understand how the parts interoperate as we dive
deeper.

A type is a component of the authentication process. Managing
credentials is a part of authentication. So is setting up a user’s account
and resource limits, as well as changing the user’s password.

The control statement indicates how PAM should react to success
and failure of a PAM module. Should the authentication request be

Chapter 1: PAM Components

21

granted? Should the request try the next module? Should a failure here
terminate the whole process? These control statements provide PAM’s
logic.

The module is the PAM module being used. Use the filename of the
module, including the trailing .so. (OpenPAM allows you to omit the
.so.) Most PAM modules get installed in a system-specific location,
such as /usr/lib/ or /lib/x86_64-linux-gnu/security/. If you want
to use a module that’s not in a standard directory, list it by its full path.
Listing a module here tells PAM to feed the authentication informa-
tion to this module and collect a response. For example, pam_unix.so
checks the local system’s password file for a valid username and pass-
word. If PAM hands this module a username and password, the mod-
ule will respond either “yes, it exists” or “nope, invalid.” The control
statement tells PAM what to do for each kind of response. (A module
can respond with more than “yes” or “no,” as discussed in Chapter 4.)

The module arguments are specific to each module. Some argu-
ments, like no_warn and debug, are recognized by many modules.
The exact meaning of each depends on the module, however. Not all
modules need or use arguments. A few poorly coded modules object
to having any arguments at all.

Split long statements between lines with a backslash (\).

auth required pam_echo checking OPIE RUSER=%U \
 USER=%u TTY=%t SERVICE=%s RHOST=%H

Let’s dive into authentication types.

Authentication Types

PAM divides the authentication process into four components. These
components might be called facilities or types, depending on whose
documentation you read. The type is the first field in a PAM rule.

Chapter 1: PAM Components

22

The auth, or authentication, type verifies the authentication informa-
tion presented and establishes any restrictions or resource limits set for
the account. If you enter a wrong password or a non-existent username,
the auth type kicks you out. If a user account has a limited number of
processes, can use a maximum amount of memory, or belongs to particu-
lar groups, the auth type handles setting those limits.

The account type controls access to an account as dictated by charac-
teristics other than simple authentication. If the user can log in only on
February 28th of odd-numbered years, that’s configured in the account
type. A user might enter the proper authentication information, but if no
account’s available she cannot log in.

The session type handles system-side setup needed to provide service.
A command-line user needs a virtual terminal, a home directory, and
probably a log entry saying that they logged in. An anonymous FTP user
doesn’t need a virtual terminal, personal home directory, or a shell, but
does need FTP-specific resources. When the session ends, any allocat-
ed resources need to be torn down. The session type manages all such
per-session requirements.

Finally, the password type is needed when the user’s credentials need
updating on the system. Maybe the user is changing their password. May-
be their hardware token needs poking. The password type handles any
actions needed to update the authentication credentials.

Each service a host offers might have one or more statement of each
type. Depending on how authentication should work on your system,
you might have dozens of one type, a single statement of two other types,
and none of the fourth.

A group of statements of the same type is often called a chain or
sometimes a stack. This book uses the word policy. Look at the example
PAM policy at the beginning of this chapter. Each policy is only one state-
ment long. In the next section, we’ll see policies with several statements.

Chapter 1: PAM Components

23

With Linux-PAM, you’ll occasionally see type statements with
a leading hyphen before the name: -auth, -account, -session, and
-password. These indicate that if the module is not installed on the
system, PAM should ignore the error. You’ll see this when a module is
optional, such as for Kerberos or systemd(8).

PAM Controls

PAM controls declare how a particular module affects a policy. You
can decide which types of authentication are mandatory, which are
voluntary, and which you don’t care about.

PAM sends the user’s authentication information to each module
in the policy. Each module returns either success or failure, meaning
that the authentication attempt succeeds or fails for that module. For
example, a password-verification module determines if the password
provided by the user matches the password configured for that user. If
the password matches, the module returns a success; if not, a failure.
The PAM module responsible for user home directories looks to see
if the user’s home directory exists, and returns success if it’s there and
failure if it’s not. (PAM modules can return more than these two codes,
as discussed in Chapter 4, but this gets you started.)

PAM controls don’t resemble the strict allow/deny syntax you’ll
find in applications like packet filters, web servers, and other Access
Control Lists. They’re more like a long-standing committee in a centu-
ries-old educational institution steeped in tradition and ritual, where
each member has an unusual name, baroque responsibilities, and
unique privileges.

This committee votes on authentication in a specified, stately
order. Each member has specific ways they can vote. Perhaps the
Archchancellor starts the vote, and can either say “yes” or reject the
whole proposal before anyone else gets a chance. The Dean can vote

Chapter 1: PAM Components

24

“no comment” or “no,” but doesn’t have the right to vote in favor of
anything. The Senior Wrangler can vote either “no” or “yes, so long as
nobody else objects.” If voting reaches as far as the Lecturer in Recent
Runes, he can either stay silent or declare, “yes, dang it, and the vote’s
over, I win!”

Meanwhile, the Librarian has a seat at the table but can only take
notes and eat peanuts.

Control statements formally define this structure. Each PAM
module gets certain voting privileges. Some control statements say, “if
this module returns success, stop processing and immediately allow
authentication.” Other control statements give instructions like “if this
fails, terminate immediately” or “if this module succeeds, proceed
to the next module.” At the end of the policy, the vote determines if
access is granted or denied.

Linux-PAM users can access a more complex control syntax, as
discussed in Chapter 4. Even so, most Linux-PAM deployments still
rely heavily on these “traditional” control statements.

PAM has five main controls: required, requisite, optional, sufficient,
and binding.

Required
A statement with the required control means that this module must re-
turn success for the policy to permit access. If a user enters the wrong
password, they cannot log in. If the sysadmin has configured the host
so that nobody can log in, they cannot log in.

If a required control fails, PAM processes the remaining modules
in the policy. The login stills return a failure, denying access, but other
modules get a chance to do any logging or accounting that they re-
quire.

If a required module succeeds, PAM continues processing the poli-
cy, giving some other module a chance to deny access.

Chapter 1: PAM Components

25

Every required module must succeed for PAM to allow access. If
even one required module fails, success in the other modules doesn’t
suffice. Consider this sample policy.

auth required pam_breathalyzer.so
auth required pam_ddr.so
auth required pam_genescan.so

This policy first hands the authentication information to the
pam_breathalyzer.so module4, then to pam_ddr.so, and then to
pam_genescan.so, all with the required control. This policy requires
unanimous consent. If any one of these modules returns a failure, the
authentication request fails. All three modules get processed, though,
so they can perform secondary tasks like logging information helpful
for the sysadmin.

Depending on the module’s function and the policy type, required
statements are a key part of multi-factor authentication.

Many other control statements (described later) claim to grant
access if they succeed. If an earlier required module fails, though, PAM
rejects the access. A failed required control acts as the great big ham-
mer of “nope.”

Requisite

The requisite control indicates that the module must succeed for access
to be granted.

If a requisite control succeeds, PAM continues processing mod-
ules. The request is granted unless later rejected.

If a requisite control fails, PAM immediately stops processing
modules and tells the application that the request is rejected. This
makes requisite different from required.

4	 Yes, the breathalyzer module should probably test to see if the
user is sober enough to log in, and thus be in an account policy. It’s
just an example, go with it.

Chapter 1: PAM Components

26

Let’s examine this PAM policy with the requisite control.

auth required pam_breathalyzer.so
auth requisite pam_ddr.so
auth required pam_genescan.so

The first module, pam_breathalyzer.so, is required. If the user does
not pass the breathalyzer test, she cannot log in, period. Whether that
module succeeds or fails, PAM continues to the next module in the
policy.

The second module, pam_ddr.so, is requisite. It must succeed for
PAM to grant access. If this module fails, PAM immediately stops
processing the policy and tells the application that authentication is
refused.

The third module, pam_genescan.so, is also required. The third
module is only triggered if the second module succeeds, however. A
failure in pam_ddr.so means pam_genescan.so doesn’t get checked.

Using the requisite control can give the user hints as to where the
authentication attempt failed. An intruder can use this information to
more precisely target their attacks. Use requisite only when you have
a very specific reason to not run later controls. Do not expend time,
energy, or attention optimizing login failures. This policy uses the
requisite control because gene scanning is expensive, and avoiding it
unnecessarily saves money.

Optional

Statements with the optional control have little effect on success or fail-
ure. Operating systems use optional controls to manage functions
that might or might not be deployed or configured, such as SSH agents
and Kerberos. You’ll also deploy optional controls to add additional
functions to an authentication session.

An optional control can permit or deny access if and only if no
other module in the policy expresses an opinion. If you have a bunch

Chapter 1: PAM Components

27

of sufficient statements and an optional statement, and none of the
sufficient statements permit access, the optional statement can permit
or deny access.

Here’s a policy that uses an optional control.

auth required pam_breathalyzer.so
auth required pam_ddr.so
auth required pam_genescan.so
auth optional pam_faildelay.so

Our three sample modules are still required: all must succeed for
the user to get access.

The new module, pam_faildelay.so, sets a delay between login at-
tempts. If a user’s attempt to log in gets rejected, the module delays re-
turning an authentication prompt to the user by several seconds. This
module doesn’t do anything with the user’s authentication credentials.
As it only changes how PAM behaves, you’d expect it to always return
success. In the unlikely event that pam_faildelay.so fails, however, you
don’t want the failure to prevent logins.

Statements with an optional control normally go at the front of a
policy. You probably wouldn’t want the failure of a requisite control to
block the optional module. I deliberately put pam_faildelay at the end
of this policy, however. I don’t want to introduce a delay before the first
logon attempt.

I should mention that using pam_faildelay at all is a poor idea;
such delays should be built into the application, not provided through
PAM, as assorted security advisories show. Ideally, each authentication
attempt should take a constant amount of time, rather than providing
a constant delay between attempts. It’s a popular module, though, so
you’ll need to at least recognize it.

The session type is the most common user of optional controls.

Chapter 1: PAM Components

28

Sufficient

The sufficient control means that success in this module is enough to
provide access, provided a previous required control hasn’t failed.

If a sufficient control succeeds, PAM immediately grants access. It
does not process further modules in the policy.

If a sufficient control fails, PAM does not deny access. Failure of a
sufficient control gets treated like failure of an optional control. PAM
records this failure as an optional failure. Not triggering a failure
permits the user to try another authentication method. Consider the
following policy.

auth sufficient pam_breathalyzer.so
auth sufficient pam_ddr.so
auth sufficient pam_genescan.so

All three modules are sufficient, meaning that successfully authen-
ticating to any one of them immediately permits access.

Think about this policy for a moment. We have three chances to
create success, but the only failures this policy can create are option-
al. What does your PAM implementation do when there’s no explicit
acceptance or denial? OpenPAM defaults to rejecting the request.
Linux-PAM normally rejects the request, but in the last twenty years
I’ve encountered certain configurations and distributions that permit
access unless specifically denied. Best practice calls for explicitly re-
jecting access. Both Linux-PAM and OpenPAM include pam_deny for
exactly this application.

All requests to pam_deny fail, creating a fail-safe. If your last
rule in a policy uses a sufficient control, follow it up with a required
pam_deny statement. You’ll get more detail on pam_deny in Chapter
3.

Chapter 1: PAM Components

29

auth sufficient pam_breathalyzer.so
auth sufficient pam_ddr.so
auth sufficient pam_genescan.so
auth required pam_deny.so

With this addition, either one of these tests passes or the request is
denied.

The sufficient control permits either/or authentication methods.
Look at our next policy for an example.

auth sufficient pam_breathalyzer.so
auth required pam_ddr.so
auth required pam_genescan.so

The first module, pam_breathalyzer.so, is sufficient. If the user
passes this module, PAM considers the request successful and stops
processing the policy. If this module fails, though, PAM logs an op-
tional failure and continues down the policy.

The second and third statements are required. You’ll hit these
statements only if the first module returns a failure.

The end result? The user may authenticate either with
pam_breathalyzer.so, or with both pam_ddr.so and pam_genescan.
so. As this policy ends with required controls, we don’t need a failsafe
pam_deny.so statement at the end.

Binding

The binding control is pretty much a required control that imme-
diately stops processing the policy on success. The binding control is
used rarely at best—I have never seen it deployed in the real world.
The Sun engineers thought binding looked useful when they first
proposed the standard, but reality disagreed. I’ve only seen the word
“bind” in PAM statements in an LDAP context. It’s not even imple-
mented in Linux-PAM. For these reasons, while I’ll explain binding
here, the rest of this book pretends it doesn’t exist.

Chapter 1: PAM Components

30

If a statement with a binding control succeeds, and no earlier
required statement failed, the application is told to immediately grant
access. PAM does not process any further statements in the policy.

If a statement with a binding control fails, PAM denies access. The
remaining rules of the policy are processed, allowing them to perform
their functions, but the access request is ultimately rejected.

If you’re considering using binding, try sufficient instead.

Include

Both Linux-PAM and OpenPAM support include statements, allowing
you to pull one policy into another. The policy could come from files
in /etc/pam.d or /etc/pam.conf. Debian systems pull in the entire
file that’s referenced, while OpenPAM and most Linux-PAM sys-
tems pull in only the statements of the relevant type. Here’s CentOS’
/etc/pam.d/sudo, the PAM configuration for sudo(1).

auth include system-auth
account include system-auth
password include system-auth
session optional pam_keyinit.so revoke
session required pam_limits.so

This policy has a single auth rule. It includes the pol-
icy system-auth. This tells PAM to check for a file
/etc/pam.d/system-auth or a policy of that name in /etc/pam.conf,
grab all of the rules of this type, and put them here. The file
/etc/pam.d/system-auth contains this auth policy.

auth required pam_env.so
auth sufficient pam_fprintd.so
auth sufficient pam_unix.so nullok try_first_pass
auth requisite pam_succeed_if.so uid >= 1000 quiet_success
auth required pam_deny.so

When a user accesses the login service, they pass through this
policy.

Chapter 1: PAM Components

31

Using includes lets the sysadmin maintain the PAM configuration
for several services in one location. Changing the included file makes
changes immediately propagate to all involved services.

All operating systems use a slightly different include policy de-
sign, however. Many CentOS PAM modules include the system-auth
configuration file. FreeBSD uses /etc/pam.d/system. Debian
breaks the central include files out by types, such as common-auth,
common-session, and so on.

Debian uses @include to pull in an entire file. Here’s Debian’s
/etc/pam.d/sudo configuration.

@include common-auth
@include common-account
@include common-session-noninteractive

This configuration says “use the same authentication as everyone
else, the same account type as everything else, and the same session
setup as any other noninteractive process.”

The advantage to including files like this is it makes adding entries
to the beginning or end of a policy very easy. If I want to add a PAM
module to a type for only one program, I can add it to that program’s
file. Here, I tell Debian’s sudo to require a breathalyzer test in addition
to all the usual authentication methods.

auth	 required pam_breathalyzer.so
@include common-auth
@include common-account
@include common-session-noninteractive

Include files improve your flexibility without requiring that you
maintain multiple copies of your PAM policies.

Linux-PAM also supports substacks, which are similar to includes.
See Chapter 4 for a discussion of substacks.

Chapter 1: PAM Components

32

Modules and Arguments

The modules and their arguments at the end of each PAM statement
dictate the functionality or behavior the rule implements. Each mod-
ule provides features such as checking passwords, configuring home
directories, or allocating terminals.

We’ll install most features by installing and using PAM modules.

Module Context

As you explore PAM modules, you’ll notice that many modules get
called by several different PAM types. The pam_unix.so module, for
example, appears in auth, account, and password policies. The way the
module behaves, and the services it provides, vary depending on the
type calling it. If an auth type calls pam_unix.so, the module checks
the password. The account type gets account availability information
from pam_unix.so. The password type uses pam_unix.so to change the
system password file.

Not every module provides services to all types. Some very useful
modules support only one type but perform a vital service for that
type. The module pam_mkhomedir.so, for example, creates nonex-
istent home directories for authenticated users as part of the session
type. This has nothing to do with passwords, but is vital for large
enterprises.

Module Arguments

Module arguments, or flags, configure the module itself. Should a
module tell a user why it rejected a request, or not? Do you want op-
tional features activated? Module arguments enable and disable these
optional features.

Here, we set the nullok and try_first_pass flags to the pam_unix
module.

Chapter 1: PAM Components

33

auth sufficient pam_unix.so nullok try_first_pass

Some flags take their own arguments, letting you set limits or tog-
gle functions.

account required pam_breathalyzer.so bal<8
account required pam_genescan.so neanderthal=0

Breathalyzers on their own don’t know your organization’s toler-
ance for alcohol. In this example, if a user’s blood alcohol level is less
than 0.08, the account is available. How did I learn about this argu-
ment? I read the module documentation. Similarly, in compliance with
United States anti-discrimination laws, we’re telling the gene scanner
to not perform the Neanderthal checks.

A module might need a completely different argument when used
in a different context.

Common Module Arguments

While anyone can write a PAM module, that doesn’t mean that every-
one reinvents module configuration. Most PAM modules accept these
usual arguments for common functionality.

A PAM module isn’t required to accept any of these arguments. A
properly coded PAM module that doesn’t support the functionality of
a flag will silently ignore it.

debug

The debug flag tells the module to log debugging information via
syslog. PAM debugging messages are logged with the auth facility at
priority debug. Adding the debug flag to pam_unix.so and watching
the system log will teach you a whole bunch about how your PAM
implementation processes authentication requests.

Most but not all PAM modules support debugging. If a PAM
module behaves badly when you use the debug flag, take that as a hint

Chapter 1: PAM Components

34

that the module is poorly programmed. You might be stuck using the
module, but at least you’ve been warned.

In OpenPAM, the debug flag not only triggers debugging output
of PAM behavior, but debugging within the shared library. You’ll see
which service function gets called and what it returns, as discussed in
Chapter 3.

Generic PAM errors, like listing a module that doesn’t exist,
appear in the system’s security log (normally /var/log/secure or
/var/log/auth).

no_warn

PAM modules might offer feedback on why they reject an access
request. Enabling no_warn silences that feedback. While the breatha-
lyzer module normally tells a user that they can’t log in because they’re
too intoxicated to find their face, let alone program, adding no_warn
turns that warning off.

use_first_pass

A host’s authentication system might be set up to try to validate a
username and password through each of several methods. One host
might try both the local password file and LDAP, for example. While
each PAM module could prompt the user for the password, the
use_first_pass option tells the module to use an already entered pass-
word. Without this option, it’s possible that a module will prompt the
user for their password again.

If the user has never entered a password, she gets prompted any-
way.

If the existing password doesn’t work, the module fails.
The use_first_pass option normally appears only in auth rules.

Chapter 1: PAM Components

35

try_first_pass

Much like use_first_pass, the try_first_pass option tells the module to
try to authenticate with a previously entered password. If the password
isn’t correct, however, the module can prompt the user for a password.
If that password fails, the module fails.

The try_first_pass option normally appears only in auth rules.

use_mapped_pass
The use_mapped_pass option lets you hash or encrypt a password en-
tered by the user. Like the binding control, use_mapped_pass is rarely
used today. I’m only including it for completeness.

expose_account

Human beings are terrible at following instructions. The ma-
chine asks for a username, and we type a password. For rea-
sons like this, modules tend to be quiet about failures. They
keep quiet about information such as the username, the user’s
home directory, and so on. The expose_account option tells the
module to release this information. Some modules will print
messages like failed to authenticate user mwl or
home directory /home/mwl not available when you enable
this option.

Support for expose_account varies between modules.

Default Policies
Not all applications need their own policy. Many applications can
share a set of common defaults. If PAM doesn’t find a policy file for an
application, it calls the “other” policy, from /etc/pam.d/other.

These system default policies vary widely between systems.
FreeBSD’s is very similar to the system policy file that gets pulled into
most other policies, while CentOS’ denies everything. Check what
your operating system does.

Chapter 1: PAM Components

36

Policy Processing and Results
A PAM policy, or chain, is a group of rules of the same type for a ser-
vice. An application might have auth, account, session, and password
policies, or it might have policies for only some of those. FTP doesn’t
need (and shouldn’t grow!) a way for users to change passwords, after
all.

Here’s the complete default system authentication from a FreeBSD
system.
auth sufficient pam_opie.so no_warn no_fake_prompts
auth requisite pam_opieaccess.so no_warn allow_local
auth required pam_unix.so no_warn try_first_pass nullok
account required pam_login_access.so
account required pam_unix.so
session required pam_lastlog.so no_fail
password required pam_unix.so no_warn try_first_pass

The auth policy is three statements long. The account policy is two
statements, while session and password are only a single statement. Pol-
icies can be far, far longer—on most Linux systems auth policies are at
least half a dozen statements, with more added on a per-protocol basis.
Apple and OpenSolaris-based systems often have one-statement policies.
(That’s why we’re going through a modest OpenPAM example here.)

Each policy has the task of allowing or rejecting that type of access
request. It makes the decision based on the statements in the policy.

Consider the three-statement auth policy above. When a user
runs a program that invokes this policy, PAM first calls the module
pam_opie and feeds it the required information. The pam_opie mod-
ule has the sufficient control: if it’s successful, the auth policy imme-
diately says “Access allowed” and stops processing the policy. A failure
from this first module doesn’t mean that the module objects to letting
the user log in—it simply won’t say yes. When a sufficient module fails,
PAM continues processing the policy. It’s the computing equivalent of
“go ask your mother.”

Chapter 1: PAM Components

37

The second auth module, pam_opieaccess, has the requisite con-
trol. If this module returns success, access is allowed. If the module
returns failure, though, PAM immediately stops processing the policy
and returns failure. It’s a hard yes/no decision.

The last module in the auth policy, pam_unix, is required. If the
module returns success, access is allowed. If the module returns fail-
ure, access is denied.

Taken as a whole, the auth policy could be processed in a couple
ways. If the first, sufficient module succeeds, access is immediately
allowed. If it fails, processing falls through to the next two rules in the
policy. Both of these must return success for access to be permitted. A
failure in either of the last two modules denies access.

In most deployments, policies weigh rejection more heavily than
permitting access. Most control types have veto power, letting them
deny access even if later statements in the policy say yes.

As you can see, PAM policy processing differs from the usual
allow/deny syntax of your average access control list. Thinking of PAM
policies as resembling firewall rules will cause you pain. PAM uses its
special language to make that clear.

Now that you understand some basics of how PAM works, let’s
look at a few common modules and see how they’re configured.

39

Chapter 2: Common Modules
While Linux-PAM and OpenPAM were separately implemented, their
developers used Solaris PAM as a model. Both include many modules
similar in concept to those in older versions of Solaris.

This chapter takes you through many of those common modules,
how they work, and what you can do with them. Many of these are
very small and provide only a single function, but I cover them briefly
so that you start to understand how PAM glues together all the dispa-
rate Unix authentication functions.

Let’s start with a class you’ll see everywhere.

Core Unix Authentication: pam_unix

The pam_unix module handles all interactions with the sys-
tem password file, /etc/passwd, and related files like /etc/group,
/etc/master.passwd, /etc/shadow, and so on. It also supports Network
Information Service (NIS), the traditional means of managing dis-
tributed authentication. A host not using a centralized authentication
system like LDAP or Kerberos almost certainly uses pam_unix. Even
hosts that use centralized authentication often use pam_unix to look
up unprivileged accounts for local applications.

The auth, account, and password PAM types use pam_unix. It’s not
used for the session type.

Password authentication predates PAM by decades. The pam_unix
module has the unenviable duty of lugging around all those years of
accumulated functionality, controlled by various option flags.

Chapter 2: Common Modules

40

Detailed Logging with audit

The audit option is a more detailed and verbose version of the debug
option. It sends very detailed logging to syslog, using facility auth and
priority debug.

Depending on the operating system, the version of PAM, and the
server program, the audit log might not contain much useful information.
The OpenSSH server, for example, doesn’t necessarily use PAM at all.

Empty Passwords

The general rule with authentication is: no password, no access. Ac-
counts without passwords are not generally meant to be used inter-
actively. Application accounts, like those for MySQL or nginx and so
on, often don’t have passwords. (Application accounts are also locked,
prohibiting logons.) New user accounts might not have a password on
them.

In some cases, you might want to allow someone to log on as one
of these users. The nullok option permits access to such accounts with-
out a password.

Some implementations, notably CentOS, use nullok in an auth rule
to permit users to log on without a password. They then add nullok
to a password rule, as shown below. The combination lets the new
user log on, but forces them to immediately change their password. If
you’re interested in this feature, see if your PAM install supports this
behavior.

auth sufficient pam_unix.so nullok try_first_pass
password sufficient pam_unix.so sha512 shadow \
 nullok try_first_pass use_authtok

The downside of this behavior is that anyone can log onto the new
user’s account and assign a password. You have no guarantee that the
new account actually goes to the intended person. But the alternatives

Chapter 2: Common Modules

41

are all bad: Assign all the new users the same password, like “sword-
fish?”5 Generate random strings and hope the hapless person can type
them correctly?

Debian’s Linux-PAM supports the nullok_secure option, which
permits access with an empty password if it’s used on a secure termi-
nal. A secure terminal is one you’ve determined to be in a physically
safe space, such as a locked data center. It’s a convenience for locations
you’ve identified as secure. Secure terminals are generally limited to
the console, virtual terminals, and various types of serial ports, and are
listed in /etc/securetty.

Password File Configuration

Most Linux systems expect PAM to configure the local password data-
base. They use the system-wide PAM configuration to tell the system
to use a shadow password file, which hashing algorithm to use for
passwords, and so on.

I strongly encourage everyone to leave these settings at their de-
faults. You want your hosts to use a shadow password file. Your knowl-
edge of cryptographic hashing algorithms compares poorly to that of
the people who made those selections for your operating system. You
might have heard that Blowfish is cool6, but Linux distributions use
SHA 512 for a really good reason. If you think you must change the
password configuration, you’re wrong.

5	 The password is always “swordfish.”
6	 Blowfish grow spines when you try to eat them. If you eat
them anyway, without knowing how to cut the poison sac out, you
fall over dead. Blowfish are mean little critters. Doesn’t mean I’d use a
blowfish as armor.

Chapter 2: Common Modules

42

Users who change passwords often try to get away with minor
changes, such as scrambling the letters or adding a digit. Debian uses
the obscure option to check for these basic problems when changing
a password. This option isn’t supported in CentOS or OpenPAM, but
quality-checking modules provide better service.

Group Membership

A really common goal is limiting authentication by group. The most
well-known example is how many systems permit only members
of the group wheel to use su(1) to become root. Linux-PAM’s
pam_wheel and the pam_group included in OpenPAM systems let you
check for group membership7. Despite the different names, you config-
ure them in an almost identical manner.

First, which group are you going to check? As you might guess
from the name, pam_wheel checks for membership in the wheel
group, while pam_group has no default. For either module, specify the
desired group with the group option.

auth requisite pam_group.so group=wheel

It makes sense to allow only certain users to access the root
account, but you might want users to be able to access other accounts.
On an Oracle database server, for example, the database team probably
needs to switch to the oracle user on a regular basis. Eliminating
su(1) access for the DBAs would cause you a whole bunch of grief. The
root_only option tells both modules to apply this statement only if the
user is trying to become root.

You can also use group checks to block access based on group. The
deny option reverses the meaning of the group check, so that if a user

7	 Linux-PAM also has a pam_group, but it has a completely dif-
ferent function than OpenPAM’s pam_group. Because programmers
hate us lowly sysadmins.

Chapter 2: Common Modules

43

is a member of a group he cannot access the service. You might, say,
block the customer group from accessing SSH with an entry like this
in /etc/pam.d/sshd.

auth required pam_wheel.so group=customers deny

Negative checks like this are riskier than positive checks. I recom-
mend only permitting access to a group member, rather than denying
people in a group. Forget to add the new employee to the staff group
and she can’t do her job—but you’ll notice right away. Forget to add
the new client to the customer group, and she silently gets access to a
forbidden service.

Linux-PAM also supports the trust option. If a user is part of the
specified group, she doesn’t have to enter a password. With trust, a
member of the wheel group can run su root without entering a
password.

Group checks normally use the original user’s group membership
to perform checks. You can invert this check, creating an “allow this
service if the target is a member of this group,” with the luser option8.
You could thus create PAM configurations like “allow su(1) to the
oracle account.”

OpenPAM’s pam_group also has a fail_safe option. Setting fail_safe
tells pam_group that if the specified group doesn’t exist or has no
members, it should permit access. You might use this when centrally
managing your PAM configuration. You can’t use fail_safe with the
wheel group, though.

Other pam_unix Options
The standard debug option is useful, as are use_first_pass and
try_first_pass. OpenPAM’s pam_unix does not support try_first_pass,
however.

8	 I’ve been assured that luser means “local user,” not anything
else that might come to mind.

Chapter 2: Common Modules

44

Allowing and Denying Requests

When building PAM policies, ending a policy with a firm yes or no can
help. PAM includes two modules for exactly that.
pam_deny
Sometimes, you just gotta say no. That’s what pam_deny is for.

Use pam_deny to block all requests. By putting pam_deny at the
end of a policy, you declare that everything not permitted earlier is
forbidden.

The pam_deny module is especially important when using suffi-
cient statements. The sufficient control says “pass this and you’re in,
so long as nobody else objects. Fail this, and you can try something
else.” If a request reaches the end of a bunch of sufficient statements
and hasn’t passed any of them, but nothing has denied access, adding a
pam_deny at the end provides an authoritative refusal.

You’ll also see pam_deny used where a request simply makes no
sense. CentOS provides fingerprint-based authentication. The Red
Hat developers believe that people’s fingerprints don’t change, 9 so they
categorically deny attempts to change the user’s password.

password required pam_deny.so

The required control indicates that the module must return success
for the request to be granted. The pam_deny module never returns
success. This PAM configuration blocks all attempts to change the
user’s fingerprint.
pam_permit
If pam_deny is uptight and refuses everything, pam_permit is its mir-
ror twin. Like a really bad negotiator, pam_permit says yes to every-
thing. It has no options and no tunable behavior.

9	 The Red Hat developers clearly need to read more crime nov-
els or watch more John Carpenter movies.

Chapter 2: Common Modules

45

Some services need to use pam_permit to explicitly allow access. You’ll
see many programs use pam_permit with session policies for this reason.

Allowing Root

PAM lets you explicitly grant the root account its all-encompassing privi-
lege. The pam_rootok module allows access if the user is root.

I most often see pam_rootok used with include statements. Here’s the
CentOS 7 PAM configuration for chfn(1).

auth sufficient pam_rootok.so
auth include system-auth
account include system-auth
password include system-auth
session include system-auth

Taken as a whole, this means “root can always run this command,
or others as the system authentication permits.”

Pam_rootok works only for auth statements.

Secure Terminals

Unix-like systems consider some terminals more secure than others.
While SSH might be a secure protocol, the virtual terminal used by
SSH is not inherently secure. The physical console might not be in a
secure location, but if you have console access you can physically alter
the machine, so you might as well call it secure. Those serial ports
might be secure if they’re connected to a local terminal on the sysad-
min’s desk, but not so much if they’re in a modem pool. If the machine
and its console are in a room secured by very serious locks, the physi-
cal terminal is as secure as it can be.

Normally, a user cannot log in directly as root. They need
to log in as a regular user, and then use su(1) to become root.
The pam_securetty module allows a direct login as root, if and only if
the user authenticates on a secure terminal.

Chapter 2: Common Modules

46

BSD systems consider a terminal device secure if its entry in
/etc/ttys has the secure flag.

Linux systems list secure terminal devices in /etc/securettys.
Linux-PAM’s pam_securetty also allows logins as root on console
devices listed on the kernel command line, as well as consoles listed
in /sys/class/tty/console/active. Pam_securetty’s noconsole option
disallows these additional devices, restricting root logins to only
devices listed in /etc/securettys.

Login Accounting

PAM provides information to the user accounting system through the
pam_lastlog module. On CentOS and Debian, user accounting is in
/var/log/lastlog, while FreeBSD puts it in /var/log/utx.lastlogin.
It also prints the welcome message when the user logs in, informing
them of the last time they logged in.

Pam_lastlog only works as part of a session statement.
Linux-PAM supports several options to modify pam_lastlog’s

accounting and login behavior. You can disable certain accounting
functions with options like nowtmp and noupdate. Options like noterm
and nohost remove information from the user’s login message, while
showfailed displays the last time someone failed to log into this ac-
count. Finally, the inactive option lets you set a number of inactive
days before the account is locked out for inactivity. You can set a num-
ber of days, or use the default of 90.

session optional pam_lastlog.so showfailed inactive=5

BSD systems handle all of these functions elsewhere, so OpenPAM
supports none of these features.

Chapter 2: Common Modules

47

Preventing Logins

No matter how far in advance you announce a maintenance window,
and how many times you remind people, someone will try to use the
system when you’re doing a delicate upgrade. You might want to have
a system in multi-user mode but disallow anyone except sysadmins
from logging in. Or you might need to solve an administrative prob-
lem by not letting people log in for a while. The pam_nologin module
is just for you.

You might think you can achieve similar results by turning services
off—nobody can log into your host via SSH if the SSH daemon is off!
You could also reconfigure SSH to allow only sysadmins to log in, but
touching configuration files has its own risks. The pam_nologin mod-
ule doesn’t universally prohibit logins. It prohibits logins by everyone
except a list of privileged users.

Pam_nologin checks for the existence of a nologin
file—/etc/nologin or /var/run/nologin for Linux-PAM and OS X,
and /var/run/nologin for OpenPAM. If the nologin file does not exist,
users can log in normally. If the file exists, most users cannot log in.
Pam_nologin uses the contents of the nologin file as an error message
to the application. Whether or not the user sees that message depends
entirely on the application.

Some systems remove the nologin file at boot, while others leave
it in place at boot. What does your operating system do? Check the
documentation to see what it claims, then try on a test host to discover
what it really does.

Both OpenPAM and Linux-PAM recommend making
pam_nologin a required module, and putting it at the front of a policy.
Use it in every system service you intend to temporarily refuse access
to.

Chapter 2: Common Modules

48

Pam_nologin controls account availability, and works only in ac-
count policies. The account policy determines if an account is avail-
able.

When you have a nologin file using Linux-PAM, the root user
can still log in. As root can’t usually log in via SSH, this restricts log-
ins to the console.

With OpenPAM, a nologin file restricts logins to users who have
ignorenologin defined in /etc/login.conf. On FreeBSD this de-
faults to only root, but there’s a commented-out example for a staff
login class with this capability.

Now that you know something about the most pervasive modules,
let’s look at some of the internals PAM uses to hold everything togeth-
er.

49

Chapter 3: PAM Items, Codes, and Functions
Much PAM documentation assumes that the sysadmin is familiar with
the internal workings of PAM. The designers expect you to under-
stand which functions PAM calls for each type of statement and which
internal items and error codes PAM slings around. Configuring PAM
modules and Linux-PAM extended controls requires understanding
these return codes.

You don’t need to memorize everything in this chapter. PAM items
are critical in debugging, and you really do need familiarity with them.
Specific PAM error codes and functions are less vital for sysadmins,
however. Study the principles involved and what these codes are used
for, but don’t sweat the details of individual codes and functions. You
can always look up an error code when a PAM module spits it out, and
you’ll quickly grow familiar with the errors bedeviling your environ-
ment.

PAM Items

PAM carries a whole bunch of its internal state in a set of well-defined
items. A process that uses PAM defines the needed items and passes
them off to the various PAM stacks. All of the items start off unde-
fined. Applications and frameworks set the items they need. Modules
read the items.

Chapter 3: PAM Items, Codes, and Functions

50

Modules make their decisions based on these items. I often find
that modules use these items in unexpected ways. When authentica-
tion obstinately refuses to behave in the manner you expect, falling
back to check these items and the module documentation is a great
place to start.

Items can change as PAM runs through a policy. Applications can
change these items as modules provide information. Some applica-
tions might forget critical authentication information when a module
returns a specific code. Modules that return that code need to go at
the end of the policy, after the decisions have been made. Applications
might make up placeholder data for an item. Looking at the value of
items is a good way to figure out why PAM has gone sideways under a
program.

PAM items can contain security-sensitive information. For that
reason I strongly recommend studying and experimenting with PAM
items on a disposable virtual machine, rather than in your production
environment. PAM uses items to include facts such as usernames,
hostnames, passwords, and services. Not all PAM-aware programs
define all items. Defining a remote host makes no sense for su(1), for
example.

Here are the common PAM items.

PAM_SERVICE

The PAM_SERVICE item contains the name of the policy requested by
the application. This is normally the name of the program that’s calling
PAM—something like su, ftpd, sshd, and so on. You could recom-
pile a program to use a different service name, but that’s not common-
ly done.

Chapter 3: PAM Items, Codes, and Functions

51

PAM_USER

You might think that PAM_USER would give the username of the user
requesting authentication.

You’d be wrong.
PAM_USER is the username that something is trying to authenti-

cate to. If you’re logging on with FTP, for example, PAM_USER equals
your FTP account. If you’re running su root, however, you’re trying
to authenticate as root. PAM_USER therefore equals root.

PAM_RUSER

The item PAM_RUSER contains the requesting user. It might be a
remote user. It could be the user requesting su(1) access. A module
might set this to the same value as PAM_USER. It might not set this at
all, if this application involves only a single user account.

PAM_TTY

See which terminal a process is running on by checking PAM_TTY.
This might be a virtual terminal like pts/2 or a console login like
tty2. If this is a graphic application that doesn’t really have a termi-
nal, it could be the contents of the $DISPLAY environment variable.

PAM_HOST

This gives the hostname where the authentication is taking place. It’s
almost always the local host.

PAM_RHOST

The PAM_RHOST item gives the host where the client runs. For an
application like FTP, it contains the client’s hostname or IP address.
Not all client-server applications set PAM_RHOST. Also, applications
that run locally, like su(1), don’t normally set PAM_RHOST.

Chapter 3: PAM Items, Codes, and Functions

52

PAM_CONV

This item contains a data structure for the PAM conversation the
application expects. A sysadmin who needs to dig through this is in
trouble.

PAM_AUTHTOK

The authentication token is the user’s current password, or pass-
word-like thing.

PAM_OLDAUTHTOK

This is the user’s expired password. You’ll see this when changing
passwords.

PAM_USER_PROMPT

This contains the prompt used to request a username for authentica-
tion.

PAM_AUTHTOK_PROMPT

This item gives the prompt to request a password.

PAM_OLDAUTHTOK_PROMPT

This contains the prompt used to request an expired password. You’ll
see this when a user needs to change their password before logging in.

PAM_SM_FUNCTION

Linux-PAM added PAM_SM_FUNCTION to store which PAM ser-
vice module function the module is called with. Most sysadmins won’t
need this, but don’t let its sudden unexpected appearance disturb you.

PAM_TYPE

Linux-PAM also added PAM_TYPE to show the type of policy that
called a module. This contains auth, account, password, or session.
Linux-PAM calls almost always define PAM_TYPE.

Chapter 3: PAM Items, Codes, and Functions

53

I discuss PAM functions and service module functions later this
chapter.

Reading Items with pam_exec

While PAM modules pass items around, they don’t really provide an
interface for displaying them to mere sysadmins. Linux-PAM systems
offer pam_warn to dump information from PAM, but it’s not uni-
versally available. We’ll see pam_warn in Chapter 6. Every Unix-like
system supports using the pam_exec module to copy debugging infor-
mation out of a policy, however. Chapters 6 and 7 cover pam_exec in
detail, but we’ll touch on it here.

Pam_exec lets you run arbitrary commands as part of a policy.
Most often, this is a shell script. (You can put simple commands di-
rectly into a pam_exec statement, but that feels more fragile to me.)
We’ll use a simple example to copy all PAM items from the policy into
the system log. Almost every operating system includes pam_exec.

Here’s a simple script for capturing PAM items and writing them to
the system log. I install this as /usr/local/scripts/pamvarlog.sh, but
you can put it in your preferred location.

#!/bin/sh

set | grep PAM | xargs logger

This pulls all environment items, grabs any item or value that con-
tains PAM, and sends them to the system log.

Now attach this script to the PAM policy for a service, preferably
near the top. You don’t want a requisite statement to prevent the script
from running before you have your data.

Chapter 3: PAM Items, Codes, and Functions

54

auth required pam_exec.so /usr/local/scripts/pamvarlog.sh
account required pam_exec.so /usr/local/scripts/pamvarlog.sh
session required pam_exec.so /usr/local/scripts/pamvarlog.sh
password required pam_exec.so /usr/local/scripts/pamvarlog.sh

Add these statements to your test system’s main auth policy:
/etc/pam.d/system on FreeBSD, /etc/pam.d/system-auth on CentOS,
and Debian’s four /etc/pam.d/common- files. You’ll get messages like
this in /var/log/messages.

Mar 2 14:54:23 host1 mwl: PAM_RUSER=mwl PAM_SERVICE=su
PAM_TTY=pts/0 PAM_TYPE=auth PAM_USER=root
Mar 2 14:54:25 host1 mwl: PAM_RUSER=mwl PAM_SERVICE=su
PAM_TTY=pts/0 PAM_TYPE=account PAM_USER=root

This immediately shows that the user mwl ran su(1) on terminal
pts/0, and the request hit both the auth and account policies. The
script doesn’t log the results of the su request, but most programs that
use authentication can perform their own logging.

Mar 2 14:54:25 host1 su: (to root) mwl on pts/0

PAM modules often expect you to understand which items it uses.
We’ll see an example of this behavior in Chapter 5.

PAM Return Codes

Success and failure aren’t always clearly delineated. Just as politics
has a whole scale of gray between “yes, absolutely!” and “That’s it, I’m
moving to Canada/Russia/Antarctica/Discworld,” PAM has a bunch of
possible answers besides “yes” and “no.” There’s a shipping container of
difference between “wrong password” and “the sysadmin configured
this PAM module incorrectly,” and neither is the same as “the LDAP
server is down.”

When PAM calls a module, the module responds with precisely
one return code. The exact interpretation of that return code depends
on that module—an “expired password” error means something differ-
ent if you have passwords locally versus in LDAP.

Chapter 3: PAM Items, Codes, and Functions

55

PAM includes 30 return codes, numbered 0 to 29. Many of them
crop up only in bizarre circumstances or when the system is miscon-
figured. Mismatched binary types and un-loadable libraries show up in
the system log, and are familiar if annoying parts of every sysadmin’s
troubleshooting routine. For the complete list, check out the X/Open
Single Sign-on Service (XSSO) Pluggable Authentication Modules
specification or pam(3).

Each return code has a formal name, usually given in all caps,
starting with PAM. You’ll see return codes like PAM_SUCCESS,
PAM_AUTH_ERR, and so on. You might see the return code number,
from 0 to 29. You might also see the return code name in lower case,
without the leading PAM_. That is, return codes PAM_SUCCESS, 0,
and success all refer to the same thing.

Many return codes appear to overlap. To a system program-
mer they don’t, but for a sysadmin they do. Return codes like
PAM_CRED_EXPIRED and PAM_AUTHTOK_EXPIRED mean that
the authentication credentials or password expired. Which error you
get depends on how you’re authenticating, but for a sysadmin, they
both mean that the user’s password or other authentication token is no
longer valid.

You don’t need to know every PAM return code. You do need to
know that the return codes exist, that each PAM call returns one and
only one code, and how to learn more about each code when it ap-
pears.

Here are the PAM return codes you’re most likely to encounter.

PAM_SUCCESS (0)

The request fully succeeded. The user authenticated correctly. This
is an unqualified yes.

Chapter 3: PAM Items, Codes, and Functions

56

PAM_SERVICE_ERR (3)

Some service that the PAM module needs has failed you. This appears
most commonly with centralized authentication, when the Kerberos,
LDAP, or NIS servers have gone belly-up.

PAM_SYSTEM_ERR (4)

The module experienced an OS-level error when trying to run.

PAM_PERM_DENIED (7)

The module says that this user lacks the privileges needed to return
success. This permission error could be anywhere in the application
stack. Check your system log.

PAM_MAXTRIES (8)

The module has a limit on the maximum number of times you can try
to enter the correct authentication credentials. You’ve blown past that.

PAM_AUTH_ERR (9)

An error in authentication has occured. The user entered the wrong
password.

PAM_NEW_AUTHTOK_REQD (10)

Most frequently, getting this return code means that the user’s pass-
word has expired and must be changed. In PAM modules not related
to passwords, however, it might appear when some password-like
entity needs adjustment or replacement.

Only account policies should return this code.

PAM_USER_UNKNOWN (13)

The authentication system doesn’t recognize this user.

PAM_IGNORE (25)

The PAM policy should ignore the result of this module, and not let it
vote on allowing or denying access.

Chapter 3: PAM Items, Codes, and Functions

57

Functions

Each type of PAM request has well-defined programming interfaces
to perform the task. These APIs both give PAM its flexibility and limit
its scope. Sysadmins don’t have to know how to use these functions,
of course. If they appear in documentation or the system log, though,
knowing roughly what the function does can help debug issues.

PAM Setup and Resources

Setting up a PAM session requires that a program call the pam_start
function. When the PAM session completes, the pam_end function
tears down the session and releases all the resources the session used.

A program’s PAM session is a conversation between the program
and the PAM libraries. A PAM application needs a “conversation call-
back,” a way for the PAM stack to send messages back to the applica-
tion, provided by the pam_conv function.

In addition to the items discussed earlier this chapter, PAM in-
cludes a whole list of internal items. Even the prompt presented to the
user is an item. The pam_set_item and pam_get_item functions let
PAM manipulate these items.

The pam_setenv, pam_getenv, pam_putenv, and pam_getenvlist
functions allow PAM to manipulate the user environment before log-
ging in. For example, a module like pam_krb5 would use these func-
tions to set $KRB5CCNAME to the credential cache where it stored
your ticket at login.

A PAM module might need to allocate memory for its own in-
ternal functions. While the PAM programming interface is strict-
ly defined, a PAM module can do anything it likes internally. The
pam_set_data and pam_get_data let a PAM session create and manip-
ulate these chunks of memory by name.

Chapter 3: PAM Items, Codes, and Functions

58

Authentication Functions

As the name implies, the pam_authenticate function authenticates the
user. The function takes the username and an authentication token
(a password, fingerprint, gene scan result, or so on) and checks them
against an authentication database.

The pam_setcred function manages a user’s credentials. A user’s
credentials can include items like the user’s username and group mem-
berships, as well as things like Kerberos tickets or other single-sign-on
accoutrements.

PAM modules do not set a user’s UID or GID. Nor do they per-
form actions like opening a virtual terminal for the user. These actions
normally need to be done by a child process. If a PAM module were
to drop privileges from root to the user’s when it called pam_setcred,
the module would lose access to privileged operations like updating
the lastlog. Instead, the server spawns a child process for the user’s
activity, while the server process maintains its privileges and cleans up
after itself.

Account, Session, and Password Functions

PAM uses the pam_acct_mgmt function to enforce account policies.
Any restrictions on logon hours, password expiration, or other ac-
count statements pass through pam_acct_mgmt.

Session statements trigger the pam_open_session and
pam_close_session functions.

Finally, the pam_chauthtok function lets the server change the
user’s password.

PAM Service Functions

In addition to the functions used to call PAM, you’ll see functions that
PAM itself uses to call modules. These service module functions are

Chapter 3: PAM Items, Codes, and Functions

59

how each module responds to a type of request. Each service mod-
ule function corresponds to a regular PAM function, and starts with
pam_sm_ rather than just pam_.

The service module functions are pam_sm_acct_mgmt,
pam_sm_authenticate, pam_sm_chauthtok, pam_sm_close_session,
pam_sm_open_session, and pam_sm_setcred. So pam_sm_acct_mgmt
is just like pam_acct_mgmt, but used within a module rather than
PAM.

Why would you need to know all this? For one thing, Linux-PAM’s
extended controls make heavy use of PAM return codes.

61

Chapter 4: Linux-PAM Extended Controls and
Substacks
PAM defines four common control statements: required, requisite,
sufficient, and optional (as well as the widely-ignored binding). These
controls determine how a PAM module’s successes and failures affect a
user’s authentication.

Linux-PAM offers additional extended control statements that let
you fine-tune responses, as well as the substack parameter that lets you
divert policy processing. These appear only in Linux-PAM.

Extended Controls

A yes from a PAM module is always PAM_SUCCESS, but a no comes
in endless flavors. Each PAM module might return one of several
different responses to a query. With extended controls, you can fine-
tune how a PAM statement handles rejection based on these respons-
es.10 Remember, a module returns one and only one response to each
query.

Extended controls replace the four PAM controls with a specific
instruction for each response a module might return, plus a gener-
ic catch-all instruction for any responses you don’t specify. “If this
module returns X, block access. If the module returns Y, that’s good
enough. If the module returns Z, immediately grant access. Any other
answer, try the next module.”

10	 If only a human being’s handling of rejection was so easily
tuned!

Chapter 4: Linux-PAM Extended Controls and Substacks

62

Identify extended controls by using square brackets ([]) around
them. Here’s an example of an extended control from CentOS, for the
module pam_securetty.

auth [user_unknown=ignore success=ok ignore=ignore \
 default=bad] pam_securetty.so

Each entry within the brackets represents a PAM response, with the
leading PAM_ stripped off, in lower case. An equals sign separates the
response from the instruction on how to handle that response. This en-
try says that when this module returns PAM_USER_UNKNOWN the
policy should take the action “ignore.” When the module returns
PAM_SUCCESS, follow the action called “ok.” If the response is
PAM_IGNORE, take the action “ignore.” The default instruction, used
when the module responds with anything else, is “bad.”

The pam_securetty manual page lists five possible response
codes: PAM_SUCCESS, PAM_AUTH_ERR, PAM_INCOMPLETE,
PAM_SERVICE_ERR, and PAM_USER_UNKNOWN. The ex-
tended control defines custom actions for PAM_SUCCESS and
PAM_USER_UNKNOWN. All of the other cases tell PAM to take the
action “bad.”

Extended Control Actions

Consider PAM policies for a moment. Most statements in a policy af-
fect the decision on whether or not to permit access. At any given point
the policy might have a state like “allow access if nobody else objects”
or “we’re definitely rejecting the request, but you later modules can do
your book-keeping.” Linux-PAM’s seven extended control actions are
designed to alter the state of that policy.

The bad action tells PAM that the authentication request has failed.
That’s why our example above uses it as the default—we care about a
couple specific failures, but for most failures, we just say “no.” If the

Chapter 4: Linux-PAM Extended Controls and Substacks

63

module reply triggers bad, it’s as if a required module failed. PAM con-
tinues processing the policy, but authentication is ultimately rejected
unless deliberately reset.

The die action tells PAM that the authentication request has failed,
and that it must immediately stop processing the policy. Modules that
follow this one will not get processed. When a reply triggers die, the
PAM policy behaves as if a requisite module failed.

The ok action tells PAM that the authentication request was suc-
cessful. Access is allowed, provided no other module objects. It’s nor-
mally applied to the PAM_SUCCESS return code. An ok cannot over-
ride a bad response from elsewhere in the PAM policy. When a reply
triggers ok, the PAM policy behaves like a required module succeeded.

The done action tells PAM that the authentication request was suc-
cessful, and that PAM should immediately stop processing the policy.
If nothing earlier in the policy returned bad, the policy permits access.
When a reply triggers done, the PAM policy behaves like a sufficient
module succeeded.

An ignore action indicates that this response doesn’t alter the pol-
icy’s response. An earlier bad or ok stands. The module can still carry
out other actions, such as logging or running unrelated commands, but
PAM doesn’t let the results of the module’s work or checks affect its de-
cision on access. It’s like the most common case of the optional control.

The reset action tells PAM to throw away any previous bad or ok
results and keep processing the policy, getting a new success or failure
from the remaining modules. It’s unique to Linux-PAM. As with the
binding control, I’ve never seen reset deployed in production.

Last, you can specify a number as an action. Triggering the number
tells Linux-PAM to skip that many following modules in the policy. A
number is most often used with the pam_succeed_if module, as dis-
cussed in Chapter 5.

Chapter 4: Linux-PAM Extended Controls and Substacks

64

Standard Controls in Extended Format

Each of the standard PAM controls can be expressed in the
Linux-PAM extended control format. Understanding these can im-
prove your understanding of both the extended controls and the
traditional controls.

The required control can be expressed like so.

[success=ok new_authtok_reqd=ok ignore=ignore default=bad]

If the PAM module returns PAM_SUCCESS or
PAM_NEW_AUTHTOK_REQD, this control takes the ok action.
Authentication is successful. If the module returns PAM_IGNORE,
PAM ignores the module. If the module returns anything else, the bad
action is taken and authentication fails.

A requisite control looks very similar.

[success=ok new_authtok_reqd=ok ignore=ignore default=die]

The only difference between requisite and required is the default
action. Where a required control defaults to bad, a requisite control
defaults to die. If a module with this control fails, access is rejected and
processing stops immediately.

Sufficient controls look entirely different.

[success=done new_authtok_reqd=done default=ignore]

If the module returns PAM_SUCCESS or
PAM_NEW_AUTHTOK_REQD, the policy immediately permits
access. Thanks to the done action, no further processing happens. Any
other response doesn’t affect the policy’s voting, although the module
might take other action on the system.

The optional control resembles sufficient.

[success=ok new_authtok_reqd=ok default=ignore]

Chapter 4: Linux-PAM Extended Controls and Substacks

65

Here, a PAM_SUCCESS or PAM_NEW_AUTHTOK_REQD gets
this module to say ok and permit access. Any other result means that
this module neither permits nor denies access. Processing continues,
but other modules can still veto access.

Substacks

Linux-PAM supports processing detours, or substacks. While an
include pulls the appropriate rules from that file into the PAM policy,
PAM processes a substack separately. A control in a substack file can’t
make the whole policy stop processing—it can only terminate the
substack and return to the main PAM policy. A decision made in a
substack does affect the policy’s decision to permit or deny access.

Let’s walk through a common substack example. Here’s the auth
policy from CentOS’ /etc/pam.d/login, which regulates console log-
ins.

auth [user_unknown=ignore success=ok ignore=ignore \
 default=bad] pam_securetty.so
auth substack system-auth
auth include postlogin

This policy starts by checking the pam_securetty module (Chapter
2). It then drops into the substack contained in the file system-auth.
Many CentOS PAM configurations use system-auth as a substack,
permitting a common configuration across multiple services.

auth required pam_env.so
auth sufficient pam_fprintd.so
auth sufficient pam_unix.so nullok try_first_pass
auth requisite pam_succeed_if.so \
 uid >= 1000 quiet_success
auth required pam_deny.so

Consider how this substack gets processed. The first module,
pam_env (Chapter 5), is required. If this module fails, the request is
rejected even if later modules return success. We then have two suffi-

Chapter 4: Linux-PAM Extended Controls and Substacks

66

cient modules. Either one of these can return success and immediately
terminate processing the substack. The fourth is requisite, meaning
that if it’s successful, policy processing immediately ends. The last
module, pam_deny, always returns failure.

The substack has three control statements that can immediately
terminate the auth policy—two required and a requisite. If any of these
trigger in the substack, though, processing immediately returns to the
main policy. Maybe the substack approved access, or maybe it rejected
access. In any case, no matter what the substack declares, PAM pro-
cesses the rest of the main part of the policy.

Go back to /etc/pam.d/login policy. No matter how the
system-auth substack ends, PAM includes the postlogin file and
processes those statements. As that’s an include rather than a substack,
statements in the include file can terminate the policy early.

This takes you through the Linux-PAM extensions to PAM. Now
let’s look at some popular Linux-PAM modules.

67

Chapter 5: Popular Linux-PAM Modules
While Linux-PAM copied a whole bunch of ideas from the primordial
Solaris PAM, it’s evolved in the last two decades. Developers have add-
ed new features, separated functions into different modules, and added
support for every new hardware device they could get their mitts on.

This chapter discusses a few modules that are both exclusive to
Linux-PAM and widely used in Debian or CentOS.

Popular OpenPAM Modules

Why dedicate a chapter to Linux-PAM modules and not give equal
treatment to OpenPAM modules?

Many of the features Linux-PAM implements are not needed on
typical (BSD) OpenPAM systems. BSD systems had features like user
resource limits years before PAM or even Linux were created, and so
don’t implement those features in PAM. And BSD systems don’t need
systemd, so there’s no need for pam_systemd.

Most OpenPAM-based systems ship with modules not found
in default Linux-PAM setups, such as pam_ssh. These modules are
available as add-ons to Linux-PAM, however. We cover many of them
separately through the latter part of this book.

User Environment: pam_env

PAM lets the system manipulate a user’s environment before the envi-
ronment really exists. You can use pam_env to assign variables in the
user environment before the user’s own shell files are read. You can use
pam_env in auth or session statements.

Chapter 5: Popular Linux-PAM Modules

68

The pam_env module pulls its settings from the pam_env-specific
configuration file, the system environment file, and the user’s environ-
ment files.

pam_env Configuration

The primary pam_env configuration file,
/etc/security/pam_env.conf, lets you set environment variables that
vary depending on how the user connects. You provide a default value,
and then possibly a conditional alternative, or override, if desired. The
rules have this general format.

variable default override

If a statement has no override, pam_env sets the environment vari-
able for the user. Here we unconditionally set the EDITOR variable.

EDITOR pico

A user can override this setting with the usual shell configuration,
but this lets you set a reasonable default.

If this was all pam_env let you do, it’d be pretty lame. But pam_env
also lets the system make decisions based on the PAM environment.
PAM sets its own variables, and a connecting user probably brings part
of their own environment along. Look at the following example.

REMOTEHOST DEFAULT=localhost OVERRIDE=@{PAM_RHOST}

The default value of $REMOTEHOST is localhost. If nothing else,
assume that the user connected from the local machine. An override
is available, though. If the PAM item PAM_RHOST exists, we set
$REMOTEHOST to that value instead. The @{} syntax indicates pam_
env should check for a PAM item.

You might want to rely on user environment variables instead,
such as $SSH_CLIENT or $DISPLAY. Use ${} to check for a user
environment variable.
DISPLAY DEFAULT=${REMOTEHOST}:0.0 OVERRIDE=${DISPLAY}

Chapter 5: Popular Linux-PAM Modules

69

Earlier in pam_env.conf, we assigned the user a $REMOTEHOST
environment variable. Here we use that to help assign a sensible value
to $DISPLAY. If the user brought along their own $DISPLAY, howev-
er, let them keep it.

You can set an alternative PAM configuration file with the conffile
option. This lets you set up different environments for different ser-
vices. You might want a special environment for FTP users, and could
set it in /etc/pam.d/ftpd like so.

session required pam_env.so \
 conffile=/etc/security/pam_env_ftpd.conf

The default pam_env.conf has no uncommented entries.

System Environment

You can use the system environment file, /etc/environment, to un-
conditionally hammer variables into the user’s environment. Unlike
shell-specific files like /etc/bash.bashrc, /etc/environment affects all
users regardless of their shell.

Unlike pam_env.conf, /etc/environment is not interpreted at all.
If you want interpolation and decision-making, use pam_env.conf
instead. Each line contains a variable name, an equals sign, and the
value, like below.

IRCSERVER=irc.mwl.io

Further entries cannot refer back to the value of $IRCSERVER.
An entry like the below sets the variable $BABBLE to the literal string
$IRCSERVER rather than irc.mwl.io.

BABBLE=$IRCSERVER

The user’s shell interprets these values, and can overwrite them.

Chapter 5: Popular Linux-PAM Modules

70

Pam_env uses the flag readenv to control reading
/etc/environment. By default, pam_env reads and uses the environ-
ment file. Set readenv to 0 to disable reading the environment.

session required pam_env.so readenv=0

You can also set a different environment file with the envfile flag,
an equals sign (=), and the full path to an environment file. This lets
you set different environments for different services.

User Environments

Users can have their own environment files, and you can have pam_
env read and impose those environment files at boot. This is rarely a
good idea, but sometimes it’s the only idea. The userenv pam_env flag
lets you set a file containing desired environment variables. This file is
relative to the user’s home directory. Set the user_readenv flag to 1 to
enable this functionality.

Use userenv only if a particular user’s environment must be set
early in the login process, and you can’t set that environment for all
users.

The user environment file works exactly like the system environ-
ment file.

pam_env and Security

PAM modules can use the user’s environment and PAM items to make
decisions. By invoking pam_env, you’re feeding new variables into the
PAM authentication or session policy. It’s possible that an environment
variable set by pam_env could change the results of a PAM decision.

The risk increases if you allow the use of user environment files.
While PAM modules are usually carefully programmed, I’m very
reluctant to declare that a user environment file cannot subvert the au-
thentication process. Users are clever. If you permit user environment
files, pay close attention to your system security and behavior.

Chapter 5: Popular Linux-PAM Modules

71

While the pam_env manual page declares that pam_env should
appear last in any policy, to minimize the risk of environment contam-
ination affecting authentication or session configuration, this advice
has resulted in security flaws such as CVE-2010-4708 and CVE-2011-
3149. Both CentOS and Debian put pam_env first in policies to mini-
mize risks.

I recommend avoiding pam_env if possible.

Conditional Success: pam_succeed_if

Linux-PAM’s pam_succeed_if module lets you perform a wide variety
of checks based on user account settings, the service being checked,
and the connection. You can compare any of these characteristics to
values you choose.

At the user level, pam_succeed_if lets you check the username
(user), UID (uid), GID (gid), shell, and home directory (home). If
PAM sets the ruser or rhost items, you can check those. Finally, you
can check the terminal (tty) or service.

You can compare these as numbers, strings, and list members.
Additionally, you can do basic user group membership comparisons,
much like pam_wheel. If a comparison matches, the module succeeds.
If the comparison doesn’t match, the module fails.

String Comparisons

You can compare just about anything as a string. Even numbers can be
strings, but that’s rather limited except for precise matches. Pam_suc-
ceed_if lets you do exact string comparisons with the equals sign (=).
You can see if an item doesn’t match a string with the != operator.

Additionally, you can use globs, or shell-style regular expressions.
The =~ operator succeeds if an item matches a glob, and !~ succeeds if
the item doesn’t match the glob.

Here’s a Debian configuration for prohibiting root from logging

Chapter 5: Popular Linux-PAM Modules

72

on with GDM.

auth required pam_succeed_if.so user != root quiet_success

If the user does not equal the string root, pam_succeed_if returns
success.

Numerical Comparisons

You can compare the UID and GID to numbers. These are most useful
for defined application accounts with constant user and group ID
numbers, like www and tcpdump and the like. Use the standard math-
ematical operators for less than (<), less than or equal to (<=), greater
than (>), greater than or equal to (>=). Pam_success_if uses the equals
sign and the != notation in string comparisons; instead, use eq for
equals and ne for not equal.

CentOS uses pam_succeed_if in the system-wide defaults,
/etc/pam.d/system-auth, to prevent user accounts with a UID less
than 1000 from authenticating.

auth requisite pam_succeed_if.so \
	 uid >= 1000 quiet_success

CentOS reserves UIDs of 1000 and below for application accounts.
User accounts start with UID 1000. An account with a UID below
1000 should never authenticate. While most of these accounts block
interactive use by using /sbin/nologin as their shell, PAM adds anoth-
er layer of protection.

The quiet_success option here tells pam_succeed_if to not brag
about passing this test.

Chapter 5: Popular Linux-PAM Modules

73

List Comparisons

To compare an item with a list, pam_succeed_if offers the in and notin
operators. Give the list of comparisons after the operator, separated by
colons, much like this.

thing notin item1:item2:item3

You might disallow a user from authenticating to a service by us-
ing such a list.

auth required pam_succeed_if user notin mwl:jkh:des

So long as the user is not mwl, jkh, or des, the module succeeds.
Debian uses extended permissions to control PAM on a per-ser-

vice basis. We’ll see an example of that in Chapter 10.

User Group Membership

You can use pam_succeed_if to check and see if a user is a member of
a group or not. The ingroup operator returns success if the user is in
the group, while notingroup succeeds if the user is not in the group.
Here, we see if a user belongs to the group customers.

auth sufficient pam_succeed_if.so \
 user ingroup customers

Similarly, the innetgr operator checks for NIS netgroup member-
ship, while notinnetgr returns success if the user is not in the netgroup.

Conditional Rule Processing

Linux-PAM lets you skip statements in a PAM policy, as discussed in
Chapter 4. This is mostly used with pam_succeed_if, creating PAM
rules like “If this is true, skip the next rule in the policy.” CentOS
makes heavy use of this feature configuration with statements like this.

Chapter 5: Popular Linux-PAM Modules

74

session [success=1 default=ignore] pam_succeed_if.so \
 service in crond quiet use_uid
session required pam_unix.so

We use Linux-PAM extended controls here to say that if pam_suc-
ceed_if returns PAM_SUCCESS, skip one rule. For any other result,
ignore this module. Pam_succeed_if returns success if the service is
crond. If the service is crond, we skip one line.

For any service other than crond, the PAM policy requires the
pam_unix module.

Pam_succeed_if Options
In addition to the standard debug, pam_succeed_if has a couple spe-
cial options.

The use_uid option tells PAM to check conditions using the re-
questing user’s information, rather than the target user’s. It switches
the module from using PAM_USER to PAM_RUSER.

The quiet option tells the module to not log successes or failures
to syslog. You can selectively silence only successes or failures with
quiet_success and quiet_fail.

Finally, audit logs whenever someone checks for nonexistent users.

Local Users
In organizations with distributed user management, identifying users
with local system accounts can be a useful part of an authentication
system. The pam_localuser module returns success only if an account
exists in the system’s password file.

Note that pam_localuser doesn’t actually check the user’s lo-
cal password; it only determines if the account exists. I’ve seen
pam_localuser used in environments where the local accounts are for
use only during complete LDAP failure. The mere presence of a local
account, however, means that the user is permitted to use su(1) or
sudo(1).

Chapter 5: Popular Linux-PAM Modules

75

You can use an alternative password file with pam_localuser. Use
the file option, an equals sign, and the path to the file.

Limiting User Resources: pam_limits

Linux-PAM can impose system resource constraints on users. System
resources are no longer the scarce commodity they once were, but
even now a user might start a process that consumes the entire CPU or
fills up the host’s memory. Resource limits help prevent these prob-
lems. You can impose resource limits with pam_limits.

Users running bash can view their limits with ulimit, while csh-
based shells use limit.

Older Linux versions set these limits in /etc/limits.conf. Open-
PAM systems normally handle this issue via login classes, outside of
authentication.

Limits belong in the session PAM type.
The pam_limits system has two components, the PAM module

itself and the limits files. While you can point pam_limits at any file
you like, the default configuration file is /etc/security/limits.conf.
Additional limits files go in the directory /etc/security/limits.d.
Each line in limits.conf has four fields: a domain, a type, an item, and
a value, much as shown here.

ftp hard nproc 0

The domain identifies which users this limit applies to. You can set
limits by users, groups, wildcards, and ranges of UID and GID. In our
example, the domain is the user ftp.

The type indicates if this is a hard or soft limit. Users can override soft
limits, while hard limits are inviolate. Our example is a hard limit.

The item keyword defines which resource to limit. Pam_limits in-
cludes many resource keywords, which we’ll discuss later. The example
uses the item nproc, the keyword for the maximum number of processes.

Chapter 5: Popular Linux-PAM Modules

76

The final field gives the maximum value for that resource.
The example above restricts user ftp to a maximum of zero pro-

cesses. Hopefully that’s an account used for the FTP service; otherwise,
user Frederic Thomas Powell is going to be rather annoyed.

Limit Domains

You can identify users to be limited by username, group, UID, GID, or
wildcard.

For limits that apply to a single username, use the username as the
domain.

To use a system group put an @ symbol before the group name,
such as @wheel, @staff, or @customers.

An asterisk (*) means that this limit applies to all users. “All users”
does not include root, as the almighty root account is not bound by
mortal chains. If you want a limit to apply to root, you must explicitly
list root as the domain.

Pam_limits uses % as a special wildcard, specifically reserved for
the maxlogins and maxsyslogins limits. Used alone, it sets a maximum
number of non-root logins on this host. Put a group name after it to
set a maximum number of logins for that group.

Specify a single UID with a leading colon, as shown here.

:1000

For a range of UIDs, give the lowest and highest matching UIDs,
separated by a colon. Here we set limits on all users with UIDs from
1000 to 2000.

1000:2000

If you don’t put a maximum matching UID, the limit applies to all
UIDs equal to or greater than the one listed. Here we apply a limit to
all UIDs 1000 and higher.

Chapter 5: Popular Linux-PAM Modules

77

1000:

Group IDs work much like UIDs, except they have an @ symbol
in front of them. Specify ranges with a colon. If you’re matching a
range of UIDs, PAM compares the user’s primary group to the range.
If you’re matching a specific group, however, PAM looks at all groups
the user belongs to. Here we impose a limit if the user is in GID 10000,
even if it’s not the user’s primary group.

@:10000

Combine the % maxlogins-only wildcard with the group @ wild-
card to limit the total number of logins of all users that are in the
group. Here, if you’re in group 10000, even if that’s not your primary
group, you’re in the limited logins group.

%@:10000

Now decide what kind of limit this is.

Limit Type

Linux-PAM supports two kinds of limits, hard and soft.
A soft limit is a limit the user can raise. It’s the operating system’s

way of saying “Hey, do you really want to use more than your share
of resources?” The user can raise this limit with shell built-ins like
ulimit or limit.

A hard limit is an absolute upper cap enforced by the kernel. The
user cannot evade this limit.

Which should you use? Most users won’t know how to evade a soft
limit, so it’s effectively a hard limit. Use both soft and hard limits if you
have educated users. I normally use limits to restrict service accounts,
to prevent web servers and databases from spiraling out of control.
Hard limits are best in such cases—if my web server raises its own
limits, I have a whole new set of problems…

Chapter 5: Popular Linux-PAM Modules

78

Limit Items and Values

Linux-PAM can set limits on files, memory, processes, and logins. We
won’t cover exactly what all of these limits mean, as explaining things
like stack size, locked memory, and so on would take another whole
book.11

Most limits values are numerical. A user can open 100 files, or use
a gigabyte of RAM, and so on. The exception is the word unlimited,
which removes any limit on that user.

To set a maximum size on the user’s core files, use the core limit.
Setting core prevents an amok process from writing a multi-gigabyte
core file when it finally screams and dies. To set a maximum size of a
file the user can create, use the fsize limit. Both core and fsize take
a value in kilobytes. Here we allow users with the primary group of
customers to create 1 MB core files.

@customers hard core 1024

You can also limit the number of files the user can have open
simultaneously, with nofile. To limit how many files the user can lock,
use locks. Below, users in the customers group can only have 4096
files open simultaneously.

@customers hard nofile 4096

The four main memory restrictions are data, memlock, stack, and
as. All are set in kilobytes. The data limit caps the amount of data the
user can have in memory. The memlock value is the maximum amount
of memory the user can have locked into memory. The stack limit sets
a maximum stack size, while you can set an address space limit with
as.

11	 If you don’t know what a knob does, don’t twiddle it. In pro-
duction.

Chapter 5: Popular Linux-PAM Modules

79

You can limit the maximum amount of memory the user can claim
for POSIX message queues with the msgqueue limit. Unlike other
memory limits, msgqueue is in bytes.

The main ways to limit processor resources are by the number of
concurrent processes and the total amount of CPU time. The nproc
item lets you set a maximum number of simultaneous processes, while
cpu lets you set a maximum CPU time in minutes. Here’s how CentOS
lets all system users have a generous 4,096 simultaneous processes, but
explicitly removes any restrictions from root.

* soft nproc 4096
root soft nproc unlimited

Another way to limit processor resources is to control how ag-
gressively the operating system schedules the user’s processes. The
priority item lets you set the default niceness of the user’s processes, as
per nice(1). Higher values get less priority. Similarly, the nice item lets
you set the maximum niceness available to the user. Using priority is a
nice (no pun intended) way to let the user have resources when they’re
available, but shunt them aside when the system is loaded. Here, we
tell the user mwl that his tasks don’t matter.

mwl soft priority 10

If you’re doing real-time computing, the rtprio item lets you set a
user’s real-time priority.

The sigpending item lets you limit the number of signals a user can
have pending. The worrisome thing about this setting is that it was
written because someone needed it.

Restrict the total number of simultaneous system logins a user or
group can have with the maxlogins option. If you want to restrict the
total number of non-root logins on the system, use the maxsyslogins
option. Here we limit the user mwl to two simultaneous logins.

Chapter 5: Popular Linux-PAM Modules

80

mwl hard maxlogins 2

Remember, when limiting the number of logins by group mem-
bership, you’ll need to use the special % wildcard discussed in “Limit
Domains,” above.

Finally, the chroot limit lets you define a directory to chroot(8) a
user into. In most cases you wouldn’t use pam_limits to chroot a user,
instead relying on server software such as sshd(8).

PAM and Systemd

What does authentication have to do with systemd(8)?
Systemd does not authenticate users. PAM needs to notify systemd

when each user logs in. Pam_systemd handles that communication. As
systemd is not yet a mandatory component of most Linux systems,
pam_systemd is usually an optional module. It goes at the end of the
session policy.

The main function of pam_systemd is to manage systemd scopes
and XDG base directories. Very few people need to adjust either of
these, but you should know it’s possible. See the systemd(8) manual
page for details if you’re one of those unfortunate few.

This takes you through the most commonly used Linux-PAM
modules. Now let’s talk about some generic PAM debugging.

81

Chapter 6: PAM Debugging
So you’ve carefully tuned your PAM statements, but it doesn’t work as
you expected. Maybe authentication dies somewhere for no discern-
ible reason, or a desired module doesn’t seem to get called at all. How
can you tell which PAM modules get called, and when an authentica-
tion request dies?

In anything to do with computers, all debugging eventually falls
back to some sort of print statement. PAM skips the preliminaries
and drops you straight there. You can track a PAM request’s progress
through each policy with the system log, pam_echo, and pam_exec.
You can also fire up program debuggers like ktrace(1) and truss(1).

There’s nothing quite like that lovely feeling you get when you
break a host’s PAM configuration and no longer have root privileges
to repair your error. Any time you adjust with a host’s PAM configura-
tion, make sure that you leave a terminal with root access open. Test
all changes thoroughly. Make sure you can still get root access from a
brand new session before logging out.

Any of these techniques can make the system leak authentication
information into the system log or terminal sessions. I strongly recom-
mend performing tests on a disposable virtual machine rather than on
a system with live users.

Chapter 6: PAM Debugging

82

PAM Logging

If you can’t figure out why a module is behaving unexpectedly, start
with logging.

Basic systems administration problems show up in the system log.
My most common configuration file error, even after decades of shout-
ing truly vile obscenities at PAM, is forgetting the .so at the end of a
PAM module name. PAM searches for the nonexistent file pam_unix
rather than pam_unix.so, the statement fails, and the policy denies
access. These errors show up in system logs, usually in logs visible only
to root. Check for these logged errors first.

PAM modules perform routine logging via syslog(3), with the
facility auth. These normally wind up in a restricted log file accessible
only to root, like /var/log/secure on CentOS or /var/log/auth.log
on FreeBSD and Debian.

Many modules accept the debug argument to make the module
more verbose. The contents and amount of information depend entire-
ly on the module. PAM module developers all choose to log different
things, even—or especially—with debugging turned on, so some PAM
modules provide better debugging output than others.

But sometimes, you don’t even get to the module…

Debugging with pam_echo

The pam_echo module prints stuff to the authenticating user. Not all
programs pass these messages back to the user, but when it works it’s
enlightening and easy.

Using pam_echo

Pam_echo takes a string of text as an argument, the message to be
passed back.

auth optional pam_echo PAM auth policy starting

Chapter 6: PAM Debugging

83

If the application passes PAM messages back to the user, the text
PAM auth policy starting will appear when the policy hits this
statement.

Here’s /etc/pam.d/system from a recent FreeBSD system. (I’m us-
ing FreeBSD here because the system auth policy is far shorter than an
average Linux.) I’ve added a call to pam_echo before each module.

auth required pam_echo checking OPIE
auth sufficient pam_opie.so no_warn no_fake_prompts
auth required pam_echo checking opieaccess
auth requisite pam_opieaccess.so no_warn allow_local
auth required pam_echo checking UNIX auth
auth required pam_unix.so no_warn try_first_pass nullok

When the user attempts to authenticate with a program like su(1),
she’ll get the pam_echo messages.

$ su -m
checking OPIE
checking opieaccess
checking UNIX auth
Password:

While this is noisy, we know that the auth request made it all the
way to the end of the policy. It might also screw up shell scripts that
aren’t expecting the extra output. If an automated process starts spew-
ing errors right about the time you put debugging echoes in, you know
what happened.

pam_echo Items

You can display the contents of PAM items by using escape characters
in a pam_echo statement. Pam_echo escape sequences are the % char-
acter, followed by a single letter.

%U is the requesting username, or PAM_RUSER.
%u is the target account’s name, or PAM_USER.
%t is the terminal, or PAM_TTY.
%s is the service name, PAM_SERVICE.

Chapter 6: PAM Debugging

84

%H is the host where the client is running, or PAM_RHOST.
Linux-PAM also supports %h, the local host.
Use these to spit out PAM internal items like so.

auth required pam_echo checking UNIX auth RUSER=%U \
 			 USER=%u TTY=%t SERVICE=%s RHOST=%H

One problem with these items is that any two-character string
beginning with a percent sign gets the percent sign stripped away. A
percent sign is not a typical character in usernames, hostnames, and
service names, but should you be one of the special few, be aware of
this.

Linux-PAM Message Files
Linux-PAM lets you provide text to pam_echo through a separate text
file. Use the file= option and a filename, like so.

auth optional pam_echo.so file=/etc/message

When the user authenticates, the text in /etc/message gets passed
back to her. Adding this sort of configuration to your authentication
process lets you add generic legal warnings to your system. You can
use pam_echo items in the text file, much like this.12

Your access to this host as %u has been logged.
Unauthorized users will be mercilessly
trampled by angry Luggage.

This won’t necessarily work for all services—remember, some
programs don’t hand this text back to the user. But it will handle many
cases for you, and programs that don’t pass the text back to the user
often have a separate method for displaying these messages.

If pam_echo doesn’t have access to everything you need, or if the
client program won’t return its output, try using pam_exec to extract
more information from the PAM policy.

12	 You should get better text than this, though. Perhaps even
from a lawyer, or at least someone who plays one on TV.

Chapter 6: PAM Debugging

85

Debugging with pam_exec

If the software you’re debugging won’t pass pam_echo messages
through to the user, or if pam_echo doesn’t have access to values you
want to check, fall back on pam_exec.

We used pam_exec in Chapter 3 to capture a PAM session’s envi-
ronment variables. Chapter 7 covers pam_exec in more detail. Right
now, we’ll use it to send information about a PAM session to the sys-
tem log. Here, pam_exec calls the script pamdebug.sh, giving the script
an argument of the module that’s about to be called.
auth optional pam_exec.so /usr/local/scripts/pamdebug.sh pam_opie
auth sufficient pam_opie.so no_warn no_fake_prompts
auth optional pam_exec.so /usr/local/scripts/pamdebug.sh
				 pam_opieaccess
auth requisite pam_opieaccess.so no_warn allow_local
auth optional pam_exec.so /usr/local/scripts/pamdebug.sh pam_unix
auth required pam_unix.so no_warn try_first_pass nullok

The pamdebug.sh script logs what’s about to be called.

#!/bin/sh
logger “process $PPID calling $1”

You could also add any other debugging you like to this script,
such as capturing internal PAM variables. But as-is, the script creates
log messages resembling this.

Mar 14 08:52:21 testhost mwl: process 1314 calling pam_opie

You’ve captured the user, the process ID, and the module called.
With this information, you can sort out where your policy stopped
processing, then use module-specific features to determine how that
statement failed.

Debugging with pam_warn

Many Linux distributions offer pam_warn for debugging. The
pam_warn module does not affect the authentication process, but
sends the service, terminal, user, remote user, and remote host to the

Chapter 6: PAM Debugging

86

system log. Add pam_warn to the beginning of any auth policy you
want to debug. Here I want to use pam_warn to debug su(1) on Cen-
tOS.

auth optional pam_warn.so
auth sufficient pam_rootok.so
auth substack system-auth
auth include postlogin

As pam_warn always returns PAM_IGNORE, you can use an op-
tional or required control.

When a user tries to use su(1), each module in the policy sends
messages to the system log.

Aug 2 00:52:39 centos su: pam_warn(su-l:auth): func-
tion=[pam_sm_authenticate] flags=0 service=[su-l] termi-
nal=[pts/3] user=[root] ruser=[mwl] rhost=[<unknown>]
Aug 2 00:52:41 centos su: pam_warn(su-l:setcred): func-
tion=[pam_sm_setcred] flags=0x2 service=[su-l] termi-
nal=[pts/3] user=[root] ruser=[mwl] rhost=[<unknown>]
Aug 2 00:52:41 centos su: pam_systemd(su-l:session):
Cannot create session: Already running in a session
Aug 2 00:52:41 centos su: pam_unix(su-l:session): ses-
sion opened for user root by (uid=500)

If you need to debug further, you might look at pam_debug to
specifically set values in a PAM policy.

Between pam_warn, pam_exec, pam_echo, and the system log,
you can extract almost any information from PAM. If one method
doesn’t work, try another. You’ll need that flexibility for the next chap-
ter…

87

Chapter 7: Arbitrary Files and Random Programs
The Unix model of group membership has limits. If your environment
uses cross-platform NFS, for example, a single user can be a member
of only 16 groups. You might want to delegate managing a group to a
particular user, but most Unix-like systems don’t give you that capa-
bility. (Solaris’ capabilities system comes close.) Sometimes, you want
PAM to just read a list of users that are allowed to access a service.

Similarly, you might want the login process to run a program as
part of a PAM process. This might be part of an NIS configuration, or
related to your firewall, or a component of your custom application.

You can use PAM modules for both of these. We’ll start with
Linux-PAM’s pam_listfile.

Checking Files: pam_listfile

Traditional Unix systems included per-application lists of permitted
or prohibited users. The classic example is /etc/ftpusers, which listed
users forbidden to use FTP. If you tried to use FTP as, say, root or
operator, the FTP daemon checked this file and kicked you out.

Linux-PAM’s pam_listfile tells PAM to read a text file containing
a list, and permit or reject access based on that list. You can permit or
deny access based on the username or group, but also on the terminal
device, the remote host or remote user, or the shell.

Chapter 7: Arbitrary Files and Random Programs

88

A typical use of pam_listfile looks like this.

auth required pam_listfile.so item=user sense=deny \
		 file=/etc/ftpusers onerr=succeed

This is part of the auth policy. We set this example to be required,
but it could sensibly be requisite or sufficient. (Making a pam_listfile
configuration optional would be kind of weird, but I’m not going to
say it would never be appropriate.)

The item is what you’re looking for in the list. In this case, we’re
checking the username. You can check shells, terminals, and more.

The sense is how pam_listfile should respond if an item is in the
file. Here, we tell pam_listfile to deny the request if the username is in
the file.

Pam_listfile needs to know the file to check.
Finally, we say how pam_listfile should behave if it has an unex-

pected error, with the onerr setting. This isn’t an error like “the user
isn’t in the file,” but rather “the file is unreadable” or “the kernel told
me to bug off.” Here, we tell pam_listfile to return success if it has an
error.

This example implements the traditional /etc/ftpusers function-
ality. A username listed in the file may not authenticate to this service.

Let’s look at each part of this separately.

Pam_listfile Items

While the username is the most obvious way to permit or block access,
pam_listfile permits other options.

You might want to allow or deny access based on if the user is at
the console or not. While there’s a pam_console module, it config-
ures the environment for console users. In most organizations, the
only time you log onto the console is in a disaster. Suppose you want
sysadmins to be able to run su(1) at the console, but when logging

Chapter 7: Arbitrary Files and Random Programs

89

on remotely they must use sudo(1) instead. Add an entry like this to
/etc/pam.d/su.

auth required pam_listfile.so item=tty sense=allow \
 file=/etc/ttylist onerr=succeed

With a statement like this, pam_listfile compares the user’s ter-
minal (tty) to the file /etc/ttylist. If it finds a match, it returns the
access given by the sense setting—in this case, allow.

The file /etc/ttylist needs to contain a list like this.

tty1
tty2
tty3
tty4	

Blocking based on virtual terminals is more difficult. Linux creates
virtual terminals as needed. You can’t use wildcards or regular expres-
sions in a pam_listfile file, so you’d need to list far more virtual termi-
nals than you will ever actually have.

Allowing or blocking access based on the remote host can be done
with the rhost item. As pam_listfile doesn’t support any kind of wild-
carding or netmasks, it’s almost always the wrong place to perform
such checks. If you absolutely must use remote host matching in PAM,
use a file containing individual IP addresses and get ready for ongoing
low-level annoyance.

You can allow or deny authentication based on the user’s shell, as
given in /etc/passwd. Here I deny authentication to all users who use
a shell listed in /etc/shelllist.

auth required pam_listfile.so item=shell sense=deny \
 file=/etc/shelllist onerr=succeed

Nothing stops a user from changing their shell, authenticating, and
then restoring their preferred shell, however. You won’t see shell-based
block or permit lists very often.

Chapter 7: Arbitrary Files and Random Programs

90

Group membership is another criterion pam_listfile can process. It
doesn’t work quite the way you think, as discussed below, but here’s an
example.

auth required pam_listfile.so item=group sense=allow \
 file=/etc/grouplist onerr=succeed

If a user is a member of a group listed in /etc/grouplist, she gets
access. If not, she doesn’t.

Using pam_listfile with group membership is a great way to illus-
trate how PAM can ruin your whole day.13 You might use a pam_wheel
statement to only allow members of the wheel group to use a service,
and then add a pam_listfile statement like the above to bar anyone in
a group listed in /etc/grouplist from using that same service. Now
add wheel to /etc/grouplist. You now have a completely valid PAM
configuration that blocks everybody from authenticating.

Pam_listfile Sense and File

The file statement tells pam_listfile where to find the list of items it’s
looking for. Each item should be on its own line. As usual for configu-
ration files, use a hash mark (#) to start a comment.

The sense statement tells pam_listfile what to do with the list.
Setting sense to allow tells pam_listfile to only permit access to items
listed in the file. Setting sense to deny blocks any items in the file.

Pam_listfile Errors

You break things, usually without intending to. The onerr statement
tells pam_listfile what to do when it has a problem. Setting onerr to
succeed tells pam_listfile to allow access if it has a problem. Setting
onerr to fail causes it to fail shut, denying access.

13	 To be fair, I can’t blame pam_listfile. PAM has many ways to
ruin your day.

Chapter 7: Arbitrary Files and Random Programs

91

No, “my username is not in the file” is not a PAM error. According
to most people, the most common error is the absence of the list
file14. Perhaps you want to allow access only to accounts listed in
/etc/access. If that file is missing, should pam_listfile permit access?
Or should it refuse? There is no universally correct answer, but onerr
lets you choose your favorite failure mode.

Pam_listfile and Changing Usernames

You’ll see weird behavior from pam_listfile when a user changes user-
names, such as with su(1) or sudo(1). Pam_listfile checks access based
on the target user, not the requesting user. It checks the PAM_USER
item against the file, not PAM_RUSER.

Suppose you list user mwl in /etc/access, and configure su(1)
to use pam_listfile to check for the username in /etc/sulist before
permitting access. If user mwl runs su root, he will be denied access.
In this case, mwl is the requesting user, not the target user. This means
you could use pam_listfile to restrict which accounts someone may
su(1) to, but not from.

Services like FTP don’t change the username, however. There is no
requesting user, only the user requesting authentication. Pam_listfile
works well for these services. Alternatively, you could use pam_exec as
discussed later.

OpenPAM versus pam_listfile

OpenPAM doesn’t include pam_listfile. It’s not even an available pack-
age for most BSD-based systems.

This might seem like an obvious missing piece, but parts get added
to typical OpenPAM-based systems when they’re needed. Nobody
who’s needed pam_listfile on an OpenPAM system has submitted a

14	 According to me, the most common error is forgetting to put
“.so” after the module name. The onerr flag doesn’t help with that.

Chapter 7: Arbitrary Files and Random Programs

92

request to get it added. In part, this is because you can easily replicate
pam_listfile by running a script. We’ll look at that next.

Running Programs: pam_exec

As discussed in Chapters 3 and 6, PAM can run arbitrary com-
mands with pam_exec. If the program runs successfully (returns 0),
pam_exec returns success. If the program returns an error or fails to
run at all, pam_exec returns failure.

Why would you use pam_exec? You might extract PAM envi-
ronment items as discussed in Chapter 3. The textbook example is
rebuilding the YP database after a user changes her password. But
you can also use pam_exec to implement functions like checking a
username against a list of users before permitting access, exactly like
pam_listfile.

One thing to consider is that pam_exec fires up a process for each
authentication request. If many people authenticate to your system,
these processes can impose significant load. Verify that your “arbi-
trary commands” are not the metaphorical equivalent of hordes of
kilt-wearing little blue men that think your system resources kebab up
a treat.15 Simple commands and scripts, however, should be fine for
most environments.

Configuring pam_exec

It’s possible to put commands directly in a PAM configuration file.
For anything but the simplest commands, I find this fragile and easily
broken. You might prefer otherwise, but as I’m the one writing this
book, we’ll do it my way. Instead, put the command you want PAM to
execute in a script and have pam_exec call that script.

The simplest invocation of pam_exec takes only a single option,
the command to run.

15	 If pam_exec starts Firefox, you’re doomed.

Chapter 7: Arbitrary Files and Random Programs

93

account required pam_exec /usr/local/scripts/pamvarlog.sh

When a user attempts to access their account, PAM runs the script
pamvarlog.sh. We used this script in Chapter 3 to gather PAM envi-
ronment variables.

OpenPAM and Linux-PAM both offer additional options to
pam_exec, but we’ll cover the basic functions first. Specifically, we’ll
implement a basic pam_listfile feature entirely through shell com-
mands.

Implementing pam_listfile in pam_exec

We’re going to have a list of users permitted access to a service. If the
username exists in the file, access is granted. If not, access is denied.

PAM hands our script its usual batch of items. If you’re not
sure which items a particular server sets, capture them with the
pamvarlog.sh script in Chapter 3. Fortunately, most every authentica-
tion process needs PAM_USER.

We need to be a little bit careful in how we check for the username
in our target file. We don’t want to match comments. We want to
match only complete usernames. A little bit of grep(1) will do the trick
for us. Here’s a proof-of-concept script that checks the user against
/etc/validusers, and permits access if the username appears there.

#!/bin/sh
/usr/bin/grep ^PAM_USER /etc/validusers
return $?

This script returns whatever the grep(1) statement returns. If
grep(1) finds a match, it returns 0. If there’s no match, it returns 1.
Remember, pam_exec treats 0 as success and 1 as failure.

What if you want to deny access to users listed in
/etc/bogususers? That’s a massive, intrusive change: add an exclama-
tion point.

Chapter 7: Arbitrary Files and Random Programs

94

#!/bin/sh
! /usr/bin/grep ^PAM_USER /etc/bogususers
return $?

This script inverts the return code of the grep(1) statement.
Build on these examples to create scripts that fit your needs. At

a minimum, you must sanitize the inputs. The method for sanitizing
inputs depends on your system’s default root shell—bash has different
methods than traditional sh.

Pam_exec versus Modules
Using pam_exec for everything seems like an easy and straightforward
way to solve a lot of problems. We’re sysadmins. We like shell scripts.
“You want to authenticate against a NoSQL database? I’ll write a shell
script!”

Real life is not that simple.
When a PAM module exists for a function, you’re usually better

off using it as opposed to writing your own script. Obscure but pub-
licly available PAM modules have probably had more users than your
shell script. The worst bugs have already been found—and best of all,
they’ve been found by someone else. If you write your own script, you
get to find those bugs on your own.

Using pam_exec should be considered a last choice. It’s a really
useful last choice, though.

One thing to remember when using pam_exec is that Linux-PAM
and OpenPAM implemented pam_exec differently.

OpenPAM pam_exec

OpenPAM’s pam_exec has only one option, to adjust return codes.
OpenPAM’s pam_exec in the default configuration returns one

of two responses. If the command returns 0, pam_exec returns
PAM_SUCCESS. If the command returns anything else, pam_exec
returns PAM_PERM_DENIED.

Chapter 7: Arbitrary Files and Random Programs

95

The return_prog_exit_status option to pam_exec changes what
it returns. Instead of a simple “yes” or “no,” return_prog_exit_sta-
tus lets the script return an actual PAM return code, as discussed
in Chapter 4. Your script needs to return a valid return code for the
service module function calling it. In Linux-PAM, you can check the
PAM_SM_FUNC item to see the function calling pam_exec. The man-
ual page for each service module function lists the acceptable return
codes. Pam_exec knows which functions can accept which return
codes. If your script tries to return an unacceptable code pam_exec
substitutes PAM_SERVICE_ERR instead.

That’s the only option OpenPAM pam_exec supports. While
Linux-PAM’s pam_exec supports more options, those options can
almost all be implemented within a script.

Linux-PAM pam_exec

The Linux-PAM version of pam_exec has options for debugging, log-
ging, and handling privilege and passwords.

The debug option sends debugging information to the system log,
exactly as discussed in Chapter 1.

Your pam_exec command might generate output. That output is
normally discarded, but you can use either the log= or stdout option
instead. By defining a log file, you send any output to that file. The
stdout option sends the program’s output to standard out, letting the
calling program deal with that output.

Even if the command doesn’t normally generate output, pam_exec
echoes any errors the program throws. The quiet option disables those
messages.

Chapter 7: Arbitrary Files and Random Programs

96

The type= option tells pam_exec to run the command only if the
PAM policy type matches. You could set, say, type=account so that
this particular pam_exec only runs on account policies.16

You can hand your script the user’s password on standard in-
put, by adding the expose_authtok option. The system variable
PAM_MAX_RESP_SIZE dictates the maximum password length, but
that’s normally something like 512 bytes.

Finally, you can run programs with the effective UID of the pro-
cess being authenticated to, rather than the user being authenticated,
by adding the seteuid flag.

PAM versus SELinux

Security Enhanced Linux, or SELinux, adds fine-grained access con-
trol to Linux systems. It commonly appears in CentOS-type systems.
SELinux often prevents add-on PAM modules from functioning prop-
erly. The pam_ssh module, star of Chapter 10, is one of them, so we’ll
use it as an example.

Fixing SELinux-related problems involves verifying that SELinux
is causing your problem, then adjusting the system security policy to
permit this module to function.

Is It SELinux?

An SELinux-related error generally first appears as that “this really
should work” feeling. If a program just won’t run during login, or it
almost works but some vital function crashes, check for an SELinux
error.

Chapter 10 discusses using pam_ssh for workstation authentica-
tion. The pam_ssh module uses a user’s SSH keys to authenticate to the

16	 Theoretically, if you wanted a pam_exec statement to only
apply to account requests, you could… not put the statement in your
auth, session, and password policies? Or is that crazy talk?

Chapter 7: Arbitrary Files and Random Programs

97

local machine’s console, starts the SSH agent /usr/bin/ssh-agent, and
adds the SSH keys to the agent. (If you don’t know what this means,
grab a copy of SSH Mastery [Tilted Windmill Press, 2012]). You don’t
yet know about pam_ssh, but that doesn’t matter for diagnosing its
SELinux issues.

If you deploy pam_ssh on a recent version of CentOS, you’ll be
able to authenticate, but the module won’t start an SSH agent. Add the
debug flag to your pam_ssh statement and messages like these appear
in /var/log/secure.

Jul 6 16:53:33 centos pam_ssh[3039]: exec /usr/bin/ssh-
agent
Jul 6 16:52:29 centos pam_ssh[3039]: /usr/bin/ssh-
agent: Permission denied
Jul 6 16:52:29 centos pam_ssh[3039]: /usr/bin/ssh-agent
exited with status 127

And yet, once you have a command prompt, you can run
ssh-agent just fine.

It’s inexplicable. It’s senseless. Check for an SELinux problem.
While you can trawl through /var/log/audit/audit.log looking

for denied statements, the most authoritative way to verify a problem
comes from SELinux is to tell SELinux to log policy violations but not
block them. This is called permissive mode. This is best done on a test
system. Use setenforce(8) to switch enforcement modes.

setenforce 0

Now try to log in again. With SELinux disabled, pam_ssh starts its
SSH agent just fine. It’s an SELinux issue. Turn SELinux back to enforc-
ing mode.

setenforce 1

The problem reappears. Yep, it’s SELinux.
Now create an SELinux policy to permit this PAM module to func-

tion.

Chapter 7: Arbitrary Files and Random Programs

98

Creating an SELinux Policy

Before trying to change your system’s SELinux policy, install the tools
for SELinux management. On CentOS, the setroubleshoot package
contains everything you need. We’ll start with the audit2allow
command that reads the audit log and creates policies.

Search the audit log to determine how SELinux is blocking the ap-
plication. Here I’m searching for the keyword “denied” and the name
of my PAM module, pam_ssh.

grep denied audit.log | grep pam_ssh

If you don’t get any results, try dropping the PAM module name.
SELinux might be blocking a secondary process related to the module.
When you do get results, though, feed them into audit2allow. Use
-m and a module name to print the SELinux policy module proposal
based on the error message.

grep denied audit.log | grep pam_ssh | \
 audit2allow –m pam_ssh
module pam_ssh 1.0;

require {
 type unconfined_t;
 type ssh_agent_exec_t;
 class file entrypoint;
}

#============= unconfined_t ==============
allow unconfined_t ssh_agent_exec_t:file entrypoint;

Here comes the tricky part. Do you understand SELinux access
control lists? If so, read the proposed policy and make sure it seems
sensible. If not, either find someone with SELinux expertise and ask
them to look, or decide to blindly trust audit2allow.

Chapter 7: Arbitrary Files and Random Programs

99

To create an actual SELinux policy on your system, use
audit2allow with the –M flag and the actual module name. This
only creates the policy; it does not activate it.

grep denied audit.log | grep pam_ssh | audit2allow -M
pam_ssh
******************** IMPORTANT ***********************
To make this policy package active, execute:

semodule -i pam_ssh.pp

You’re not one to ignore instructions, are you? Do what the nice
software tells you.

semodule -i pam_ssh.pp

Your PAM module should now work, or at least it should proceed
to the next error. Which is progress, no?

Once you have a working SELinux policy, you can copy the .pp file
containing the policy to other systems and install it. You must ensure
that the SELinux policy version matches and that the types referenced
in the policy exist in the other system. The best way to do this is to use
the same operating system version for both your test and production
environments.

SELinux and pam_mkhomedir
The pam_mkhomedir module creates missing home directories when
the user logs in. It’s used in organizations that deploy centralized
authentication, such as LDAP. This book doesn’t cover the module
because it’s very trivial.

One problem with pam_mkhomedir is that it doesn’t sup-
port SELinux. Red Hat envisions SELinux as a core part of its
operating system. Rather than update pam_mkhomedir, Red
Hat has replaced pam_mkhomedir with the SELinux-friendly
pam_oddjob_mkhomedir. A solution exists, so that’s fine for most
CentOS admins.

Chapter 7: Arbitrary Files and Random Programs

100

I’ve been in more than one multi-platform enterprise where the
corporate security policy mandates use of pam_mkhomedir, however.
Perhaps the security team hasn’t updated its policy in a while. Perhaps
this is part of a cross-platform standardization push. I’ve even seen a
case of “dang it, the blasted sysadmins keep using pam_exec for every-
thing!” Adjusting the SELinux security policy lets you use pam_mkho-
medir on CentOS.

Eventually, you won’t be able to get pam_mkhomedir on CentOS.
Rather than adjusting the policy and going on with your day, talk to
your security team. Find out what problem they’re trying to solve.
Help them either update the standard or solve their problem some
other way.

But if you really want to play with your organization’s security pol-
icy, you need add-on PAM modules.

101

Chapter 8: SSH Agent Authentication
Most sysadmins manage hosts with Secure Shell (SSH). The majority
of SSH authentication happens with public keys rather than with pass-
words. If you’re using an SSH agent, you can tell PAM to use the agent
as an authentication source with the pam_ssh_agent_auth.

Pam_ssh_agent_auth (https://sourceforge.net/projects/pamssha-
gentauth/) works much the same as SSH key-based authentication.
The module grabs the user’s authorized_keys file and asks the user’s
SSH agent if it has the matching private key. If the SSH agent has the
private key, the module returns PAM_SUCCESS. Pam_ssh_agent_auth
is designed to authenticate sudo(1), so that’s how we’ll use it.

Authenticating against a user’s SSH key is a kludgy knock-off of
multi-factor authentication. It proves that the user has the key file
and the passphrase to decrypt it. A key file is not a physical thing, of
course. It can be copied and moved between machines. But it’s slightly
better than a plain password alone. For real two-factor authentication,
you want something like Google Authenticator (Chapter 9) or invest
in security tokens. On the other hand, SSH agent authentication lets
you avoid ever typing a password on your servers.

Many organizations have legitimate reasons why they don’t use
SSH agents, or reasons why they don’t want to authenticate programs
in this manner. Compromising a user’s SSH client can lead to serv-
er compromise. That’s a valid objection in many environments. But
pam_ssh_agent_auth is one of the simpler add-on PAM modules, so
it’s a good place to start exploring.

Chapter 8: SSH Agent Authentication

102

This module only works when your environment has a connection
to an SSH agent. If you log in over a serial line, pam_ssh_agent_auth
won’t reach across the serial line onto your desktop and query your
SSH agent. Even if you want to deploy pam_ssh_agent_auth every-
where, be sure you have alternate authentication methods for disaster
recovery.

Installing pam_ssh_agent_auth

CentOS-based and FreeBSD systems offer a pam_ssh_agent_auth
package. Debian has a pam-ssh-agent-auth package (as I write this, in
the experimental repository).

If your operating system doesn’t offer a package, download and
compile it from the project page.

Configuring pam_ssh_agent_auth

All pam_ssh_agent_auth configuration takes place in the PAM config-
uration file. The biggest issue is finding the user’s authorized_keys file,
but you’ll also have debugging and permissions options.

Locating authorized_keys

The file argument tells pam_ssh_agent_auth where to find the user’s
authorized_keys file. The simplest configuration points the module at
the authorized_keys file in the user’s home directory.

auth sufficient pam_ssh_agent_auth.so \
 file=~/.ssh/authorized_keys

The tilde character (~) expands to the user’s home directory. You
can also use %h to represent the user’s home directory.

For more complicated setups, especially ones where you share
PAM configurations across multiple hosts, you could use %H to repre-
sent the short hostname, %u to represent the username, or %f for the
complete hostname. These come in more when centrally managing key

Chapter 8: SSH Agent Authentication

103

files, as is common in many large-scale deployments. Configurations
like this are very common.

auth sufficient pam_ssh_agent_auth.so \
 file=/etc/ssh/keys/%u

Each user’s public key file is named after their username, in the di-
rectory /etc/ssh/keys. My key file would thus be /etc/ssh/keys/mwl.
Here the sysadmin team has a central configuration server, something
like Ansible or Puppet, and distributes the keys to hundreds of servers
with a single command. Users cannot update their authorized_keys
files.

Some hosts don’t even keep the key files on the machine, but in
a central repository such as LDAP. These hosts run a command to
retrieve a user’s key file. Rather than using the file argument, use the
authorized_keys_command argument and the path to the command.

auth sufficient pam_ssh_agent_auth.so \
 authorized_keys_command=/bin/getkeys.sh

The command to fetch a user’s key file runs with a single argu-
ment, the user whose keys it needs to retrieve. Pam_ssh_agent_auth
normally uses the user that’s trying to authenticate. If you want
to always retrieve a specific user’s keys, though, you can add the
authorized_keys_command_user option and the desired user.

auth sufficient pam_ssh_agent_auth.so \
 authorized_keys_command=/bin/getkeys.sh \
 authorized_keys_command_user=sysadmins

These options should let you put your key files anywhere that fits
your environment.

Chapter 8: SSH Agent Authentication

104

Key File Ownership

Pam_ssh_agent_auth assumes that key files in a user’s home direc-
tory should be owned by the user. Key files that are not in the user’s
home directory should be owned by root. It’s possible that you might
allow a user to edit their own key file in a central repository like
/etc/ssh/keys, but it’s so uncommon that you need to tell pam_ssh_
agent_auth about it with the allow_user_owned_authorized_keys_file
option.

Other Options

If you have trouble with pam_ssh_agent_auth, definitely try the
ever-popular debug option. The module will log its progress to the
system’s secure authentication log.

Pam_ssh_agent_auth expects to be used with sudo(1). If you com-
piled sudo to use a non-standard PAM service name, tell the module
about it with the sudo_service_name option, an equals sign, and the
service name you chose.

Configuring sudo

The sudo(1) program purges the user’s environment before assuming
any privileges. Pam_ssh_agent_auth uses the SSH_AUTH_SOCK
environment variable to find the user’s SSH agent. Depending on your
version of sudo and your operating system, you might need to config-
ure sudo(1) to leave the SSH_AUTH_SOCK environment variable in
place. The following sudoers entry accomplishes this.

Defaults env_keep += “SSH_AUTH_SOCK”

As I write this, CentOS does not require this setting, while Debian
and FreeBSD do.

Chapter 8: SSH Agent Authentication

105

Pam_ssh_agent_auth and PAM

So, how do you use this thing? Find your system’s PAM configuration
for sudo(1). In most Linux systems it’ll be in /etc/pam.d/sudo, while
FreeBSD will stick it in /usr/local/etc/pam.d/sudo.

Now the hard part: decide how you want to use the module.
Would you like SSH agent authentication to be sufficient to get

sudo access? Put the module at the top of the auth policy and use the
sufficient control.

You want to require both an SSH agent and a password? Stick
pam_ssh_agent_auth somewhere before the final pam_deny.so and
use the required control.

Let’s look at a slightly more multi-factor authentication method
now.

107

Chapter 9: One-Time Passwords:
			 Google Authenticator
A one-time password is a password that works only once. We’ve had
many one-time password implementations, from One-Time Pass-
words in Everything (OPIE) to RSA tokens. The Time-Based One-
Time Passwords system, or TOTP, uses the system clock and a shared
secret to compute a valid password on demand. The best known TOTP
implementation is Google Authenticator.

Google Authenticator does not require access to Google. The
reason it’s called Google Authenticator is because Google provides the
software, not because it hooks into Google’s systems in any way. GA
works fine on machines not even connected to the Internet.

Google Authenticator transforms your smartphone, tablet, or
Chrome browser into an authentication token, using a client-side app
and the Google Authenticator PAM module. When you attempt to ac-
cess a service using Google Authenticator, the PAM module computes
a six-digit passcode as a temporary one-time password. The server
prompts you for this passcode. Your device computes the current cor-
rect passcode for this host, using the same method. Enter the passcode
your device offers into the application. If both devices made the same
computation, the passcodes match and you get access.

Chapter 9: One-Time Passwords: Google Authenticator

108

Google Authenticator is a better multi-factor authentication meth-
od than using your SSH agent, but it’s not perfect. Any tablet, smart-
phone, or Chrome browser can become an authentication token. If the
bad guys capture any of your devices, or steal the shared secret used to
configure the client app, they have your authentication token. But at
least the devices are physical objects, not a file that intruders can easily
copy.17

Every host using GA has a separate GA configuration and a unique
shared secret. Each user must log on to each host that she’s supposed
to access and configure her GA access. Google Authenticator, by
itself, is best suited to environments with only a few servers and a few
accounts. You wouldn’t want to have a host with several thousand
accounts using plain Google Authenticator unless you dedicate staff
time to managing authentication. You can share a GA configuration
between hosts, as we’ll discuss later, but this alters GA’s security profile
and requires additional scripting and configuration. We’ll start with
the simplest case, setting up GA on a single host.

Before even starting with Google Authenticator, check the clocks
and time zones on your hosts. Google Authenticator works best on
servers with clocks synchronized to the rest of the world. System
clocks often skew away from real time, especially on virtual machines.
Use ntpd(8) or another time-keeping software to nail your servers’
clocks to everyone else’s. If GA inexplicably fails, double-check every-
thing’s clock and time zone.

Only use Google Authenticator with auth policies. It provides no
services to the account, session, or password types.

17	 Unless you backup the shared secret in a place intruders can
steal it from. Don’t do that.

Chapter 9: One-Time Passwords: Google Authenticator

109

Google Authenticator works almost everywhere; it has no envi-
ronmental requirements like pam_ssh_agent_auth. I encourage you to
think carefully before applying it to all system authentication, however.
What happens when the server’s time gets drunk and skews wildly? If
you require GA to log in at the console, fixing the problem will require
getting into single user mode, probably via a reboot. Do you have
enough redundancy to handle that? Also, Google Authenticator has
built-in login rate limiting. If you require GA for both SSH and sudo,
you’ll faceplant straight into that rate limiting.

Carefully consider the implications of your deployment decisions.

Installing Google Authenticator

The Google Authenticator client is easy. Grab your app from the de-
vice’s app store, or install the Authenticator Chrome extension for your
desktop.

Each server that you want to use Google Authenticator must
have the Google Authenticator PAM module installed. FreeBSD has
a pam_google_authenticator package, but most users will also want
to install the libqrencode package. Debian includes the libpam-goo-
gle-authenticator package, but it’s rarely current. No official package
for CentOS exists, although as of this writing EPEL includes packages
for CentOS 6 and earlier. To use Google Authenticator on a current
version of CentOS, or a current Google Authenticator on Debian, you
probably must install from source.

Grab the current source code from https://github.com/google/goo-
gle-authenticator, either with git(1) or by downloading and extracting
the zip file. The libpam directory contains the Google Authenticator
PAM module. Go into that directory to build and install the library.

Chapter 9: One-Time Passwords: Google Authenticator

110

./bootstrap.sh
./configure
make
make install

You now have the Google Authenticator PAM module and atten-
dant programs available.

Google Authenticator User Features

Many GA tutorials tell users to run google-authenticator and
answer yes to all its questions. That way lies madness. A user who
makes poor decisions can ruin their day and, worse, annoy the help-
desk. Give your users very strict instructions on how to configure the
client or, better still, script it for them.

Passcode Types

GA supports two types of passcodes: time-based and counter-based.
The time-based method combines the shared secret and the current

time to create a temporary one-time password. These passcodes are
good for only 30 seconds or so. The time-based one-time passwords
are documented in RFC 6238.

Counter-based passcodes compute a series of passcodes, each of
which can be used only once. It’s a simple list, without any dependency
on time. Counter-based passcodes are based on RFC 4226.

Both methods require synchronization between server and device.
Time-based passcodes require agreement between the clock on the de-
vice and that on the server. Counter-based passcodes require that the
user avoid butt-dialing hundreds of passcodes during dinner. While
I can conceive circumstances where counter-based passcodes make
sense, out here in drafty reality I recommend time-based passcodes.

Chapter 9: One-Time Passwords: Google Authenticator

111

File Management

Google Authenticator uses the file $HOME/.google_authenticator to
manage a user’s authentication settings and the current authentication
state. (The sysadmin can change the file location, as we’ll discuss later.)
Even rate limiting takes place in this file.

Timing and Rate Limiting

Intruders trying to gain access to authenticated services use brute force
attacks, where they try hundreds or thousands of credentials a min-
ute to see if any of them work. The odds of any one set of credentials
working is very low, but computers are incredibly patient and don’t
mind trying every possible combination until something clicks. Every
service needs rate limiting to choke this sort of attack from a torrent to
a trickle. If your service has no other way of rate limiting, Google Au-
thenticator can rate limit how many times a passcode can be used and
how frequently a user can authenticate.

GA suggests that you allow each passcode to be used only once. For
some environments, this makes perfect sense. The Open Authentication
(OATH) standard used by many organizations requires one-time-only
passcodes.

Some of us have looser security requirements and find one-time-
only passcodes intolerable. If solving an urgent problem requires
logging into a server and assessing its condition, I don’t want one SSH
session: I want three or four terminal windows, and I want them now. If
I use GA to authenticate both SSH and sudo(1), and each passcode can
be used only once, gaining privileged access takes even longer.

Even in an environment that doesn’t need OATH and has looser se-
curity requirements, if you’re using GA to allow access to an unencrypt-
ed service, allowing each passcode to be used only once makes com-
plete sense. Choose the solution that meets your organization’s needs.

Chapter 9: One-Time Passwords: Google Authenticator

112

Users can adjust clock sensitivity. Each time-based passcode is
valid for 30 seconds. The GA PAM module permits a small amount
of clock skew by default, treating the previous and next passcodes as
valid. With properly synchronized clocks, the user’s passcode is good
for about 90 seconds. The user can crank this up in her GA configura-
tion file.

Google Authenticator can also restrict the user to no more than
three login attempts every 30 seconds. Power users and sysadmins
will find this more palatable than permitting only one login. Allowing
multiple login attempts violates OATH standards, though.

All of these options are set in the user configuration program.

GA User Configuration

To configure GA, each user needs a device with suitable software and a
per-user configuration.

Device Software

The official Google Authenticator software is available for many smart-
phones, tablets, and the Chrome browser. As the one-time passcodes
are based on publicly available standards, though, people have written
other applications that can act as GA clients. There’s a Firefox plug-in.
Authy (https://www.authy.com) is one popular choice. Windows users
might prefer WinAuth (https:// winauth.com). Check around and find
a client you like.

The easiest way to configure a device requires a QR code reader.
The Google Authenticator installer recommends one for your device if
you don’t have one.

My examples use the official Google Authenticator client. While
my test equipment is a Chrome browser and a couple of Android de-
vices, the official GA client should work identically on other platforms
and operating systems.

Chapter 9: One-Time Passwords: Google Authenticator

113

Install your chosen client on your device before proceeding.

User Configuration

Before configuring PAM, log onto the server that’s going to use Google
Authenticator. Run google-authenticator to create a configura-
tion.

$ google-authenticator

The program asks a series of questions to determine how your
account should authenticate.

Do you want authentication tokens to be time-based (y/n) y

Use time-based codes, as discussed earlier.
The setup program immediately spits out a device configuration,

including a secret key, a QR code, and a URL. It also offers five one-
time codes. These codes and links are not yet permanent, however.
Before making them permanent, use one of them to configure your
device.

If your server has the libqrencode library installed,
google-authenticator displays a QR code. Using the QR code is
the easiest way to get the shared secret on your phone. Capture the QR
code on your device, and it automatically configures Google Authenti-
cator for the device.

If you’re using Chrome as your Google Authenticator device, copy
the URL into the browser. You’re ready to go.

If neither method works in your setting,
google-authenticator also displays the shared secret, an annoy-
ing long string. Manually enter it into your device.

With any of these three setup methods, your GA app should im-
mediately begin displaying six-digit codes.

Chapter 9: One-Time Passwords: Google Authenticator

114

Copy the secret and the emergency scratch codes to a safe loca-
tion, preferably on paper. You might even print the QR code, write the
server name on top of the page, and stuff it in a locked drawer. You’ll
need the emergency and QR codes if you lose your device or things go
terribly wrong, as discussed in “Device Theft” and “Disaster Recovery”
later this chapter.

Once your device knows about the code, make it permanent by
updating the user’s GA configuration file.

Do you want me to update your
“/home/mwl/.google_authenticator” file (y/n) y

Answer n, and the setup program discards all of the codes. Answer
y, and your account is ready for GA.

You then get three questions on how the user’s GA should behave.
We discussed these options in “Google Authenticator User Features”
earlier this chapter. Hopefully you decided how GA should behave
before getting this far.

Do you want to disallow multiple uses of the same au-
thentication token? This restricts you to one login
about every 30s, but it increases your chances to notice
or even prevent man-in-the-middle attacks (y/n) y

Answering y means that users can authenticate only once every 30
seconds. Answering n means that codes are reusable while valid.

By default, tokens are good for 30 seconds and in order
to compensate forpossible time-skew between the client
and the server, we allow an extra token before and after
the current time. If you experience problems with poor-
time synchronization, you can increase the window from
its default size of 1:30min to about 4min. Do you want
to do so (y/n) y

Answering y extends an individual passcode’s lifespan. Answering
n leaves it at the default.

Chapter 9: One-Time Passwords: Google Authenticator

115

If the computer that you are logging into isn’t hard-
ened against brute-forcelogin attempts, you can enable
rate-limiting for the authentication module.By default,
this limits attackers to no more than 3 login attempts
every 30s.Do you want to enable rate-limiting (y/n) y

Answering y limits logon attempts to three every 30 seconds. An-
swering n disables rate limiting.

Scripting User Setup

The Google Authenticator user setup process is simple. Surely your
users can handle typing y, capturing a QR code, and typing a specific
sequence of three y’s and n’s?

Anyone who’s been a sysadmin more than a week knows the an-
swer to this question is “absolutely not.” If more than a couple people
will use a service protected by GA, script the configuration process.
Here’s a simple script that runs google-authenticator and an-
swers y twice and n three times.

#/bin/sh
printf ‘y\ny\nn\nn\nn\n’ | google-authenticator

The \n is a return, or the ENTER key. The printf command spits
out y-ENTER, y-ENTER, n-ENTER, n-ENTER, n-ENTER, and feeds
them into google-authenticator. A user running this script gets
their QR code, URL, secret, and their emergency scratch codes with-
out making any decisions at all.

If you run google-authenticator –h, you’ll get a list of com-
mand-line flags and options that let you pre-answer questions. Write
your script however you like.

If your organization is large enough, your script should probably
hide all output other than the QR code, URL, and secret. You might
even strip the output down to the QR code.

Chapter 9: One-Time Passwords: Google Authenticator

116

GA and PAM

After configuring your account, you can run right to your service’s
PAM configuration and activate pam_google_authenticator. (If you
want to use GA with SSH, remember to review the SSH and PAM
information in Chapter 0.)

auth required pam_google_authenticator.so

But what if you have users other than yourself? Users need to log
on to the host to configure GA, but enabling GA locks them out. Boot-
strap around this problem with the nullok option. Users who lack
a GA configuration can log in without one. Once a GA configuration
exists, though, the user must enter the code to log in.

auth required pam_google_authenticator.so nullok

If you do this, have the system dump the user straight into the
Google Authentication configuration script. Otherwise, some of your
users will never actually configure GA. To truly enforce multi-factor
authentication with many users on many servers, you must centrally
manage GA.

Central GA Management

Enterprises with many servers almost certainly use a management tool
such as Ansible or Puppet to hold their environments together. The or-
ganization’s sysadmins have much better things to do than nursemaid
users, copy configuration files around, and restart services. Enterprise
software must be centrally managed.

The default Google Authenticator configuration assumes that
users are trusted. Enterprise authentication systems do not trust users.
Enterprise users can, say, change their passwords, but can’t be permit-
ted to disable rate limiting. Google Authenticator can be used in these
environments.

Chapter 9: One-Time Passwords: Google Authenticator

117

Each user’s $HOME/.google_authenticator file doesn’t only contain
the user’s shared secret. It also contains the user’s timing, rate limiting,
and clock sensitivity settings. Every organization has clever folks who
can figure out how to play with the system, and unwise enough to try
it. Plus, sometimes the user’s home directory is encrypted or mounted
via NFS, and thus unavailable until after authentication completes.
Using Google Authenticator in these enterprises requires removing the
file from the user’s control, through the file and owner options.

The file option lets the sysadmin set a different location for the
user’s .google_authenticator file. Use an equals sign and a file loca-
tion. The option recognizes the variables ~ and ${HOME} as the user’s
home directory, and ${USER} as the username.

auth required pam_google_authenticator.so \
 file=/u1/ga/${USER}/.google_authenticator

Here, each user’s GA configuration is located outside her home di-
rectory. This lets the system wait to mount the home directory until af-
ter authentication completes. By using a user-specific directory owned
by the user, each user can continue to manage her own GA configura-
tion. The file should be owned by the user and have mode 400.

You might not want the user to manage their own GA configura-
tion. More than one organization has their users configure their Goo-
gle Authenticator on a tightly protected enrollment server. The enroll-
ment server automatically propagates that configuration to all other
servers in the organization. Users in such enterprises should not have
access to edit their config files on all the other servers, and probably
not on the enrollment server either. (The enrollment script probably
hides everything except the QR code from the user.) In this case the
file should be owned by a system user, and the user forbidden to access
the file itself. Use the user option for this.

Chapter 9: One-Time Passwords: Google Authenticator

118

auth required pam_google_authenticator.so \
 secret=/etc/ga/${USER} user=google

Here, the user’s GA configuration is stashed in the directory
/etc/ga, in a file named after the user. My authentication config would
be /etc/ga/mwl. The file is owned by the user google, and should
have mode 400. While sysadmins can easily identify an individual
user’s file, the only way the configuration gets updated is through the
management system.

Not allowing the user access to their configuration prevents Goo-
gle Authenticator from using certain functions. The module keeps all
time-keeping information in the configuration file. If the user cannot
update the file, the rate limiting functions will not work. During setup,
answer n to all functions except writing the original file.

While using Google Authenticator in this manner requires addi-
tional programming, it’s no worse than using other “enterprise-ready”
token systems.

Time Skew Adjustment

Google Authenticator can try to account for an inaccurate system
clock. Unsuccessfully authenticating three times, each 30 seconds
apart, suggests to the GA PAM module that the clock is skewed and
hints at how bad the skew is.

Use the noskewadj option to turn off this behavior. If the system
clock is so inaccurate that skew adjustments make sense, fixing the
clock makes more sense than subtly insinuating there’s a problem.

Chapter 9: One-Time Passwords: Google Authenticator

119

Passcode Display

Much like passwords, passcodes are not echoed back to the user.
To echo the passcode back to the user, use the module option
echo_verification_code.

Passcodes are ephemeral entities. In many deployments, a pass-
code can be used only once. Even if someone peers over the user’s
shoulder to capture the passcode, it expires in a minute or so. Most of
the time, displaying the entered passcode for the user vastly reduces
support calls. Users—yes, even your users—can recognize they typed
the wrong six numbers when they’re visible.

Simultaneous Passcode and Password Entry
Some PAM-enabled applications and modules (such as Radius authen-
tication or SSH with PasswordAuthentication set to yes) don’t
cope well with multiple authentication prompts. You can tell Google
Authenticator to ask for both the password and the passcode in a sin-
gle request by using the forward_pass option. GA will digest the pass-
code, but hand the password on to the next module. The next module
must use the use_first_pass option to accept the forwarded password.

auth required pam_google_authenticator.so forward_pass
auth sufficient pam_unix.so try_first_pass

A user attempting to authenticate will get a single prompt, like so.
Password & verification code:

The user needs to enter her password, a space, and the Google
Authenticator passcode. If the passcode is correct, GA forwards the
password to the next module. In this case, as the next module is suffi-
cient, a correct password immediately permits access.

You cannot combine forward_pass and echo_verification_code.
Well, you can, but the GA PAM module will both echo the password
with the passcode and reject the authentication request, so the combi-
nation is not useful.

Chapter 9: One-Time Passwords: Google Authenticator

120

New Devices

Once Google Authenticator is configured, you can pretty much ignore
it… until you get a new smartphone, tablet, or computer. You’ll prob-
ably want to configure your new device with the same authentication
settings as the old one. Sometimes, you literally exchange your old
phone for a new one.

Remember when I said to back up the security code when you first
configure your account for GA? This is exactly why. Google Authen-
ticator won’t re-display the secret, the configuration URL, or the QR
code from an existing installation. You must use the backup copy you
kept. Manually entering the security code is annoying, but far better
than reconfiguring all of your servers and loading those new configu-
rations on all of your other devices.

Disaster Recovery

With Google Authenticator you might have two separate kinds of
disaster: a stolen device, or a broken PAM module. Both have similar
disaster recovery considerations.

Losing one of the factors of your multi-factor authentication
system is not disastrous, but it does require quick, deliberate action. If
you lose both the device and the password, SSH keys, or other authen-
tication, act with a speed just short of panic. Have the affected user
re-run the google-authenticator or your organization’s wrapper
script on all affected hosts. If the situation is urgent, use su(1) to run it
for the user.

Another disaster would be when a system’s clock breaks. The GA
passcode won’t work then.

When you run google-authenticator, it presents five
eight-digit codes after the QR code. These are emergency codes. The
user can use them to authenticate, but each code works only once. If

Chapter 9: One-Time Passwords: Google Authenticator

121

you backed up these codes and have them available, you can use them
to get into the system and fix the time. If you run low on emergency
codes, re-run google-authenticator to change your secret and
generate new emergency codes.18

GA removes the one-time code from the user’s configuration
before permitting access. This requires that the user have write access
to her configuration file. If your user configurations are owned by a
different user, the emergency codes will not work.

GA File Format

Google Authenticator’s configuration file, .google_authenticator,
includes only a few possible options.

5KPJYOJZCY67OENW

“ RATE_LIMIT 3 30

“ WINDOW_SIZE 17

“ DISALLOW_REUSE

“ TOTP_AUTH

21481565

…

The first line is always the shared secret. Don’t muck with it. Not all
possible codes are valid, so you can’t set a corporate standard that each
user’s secret is their first name and their Social Security number.

The presence of the RATE_LIMIT option enables rate limiting. It
takes two arguments: how many authentication attempts to allow, and
how many seconds they’re allowed in. Rate limiting requires that the
user be able to write to the configuration file.

18	 Or you could, you know, fix your servers’ clocks once and for
all. But if you haven’t done that by now, I certainly can’t convince you.

Chapter 9: One-Time Passwords: Google Authenticator

122

The WINDOW_SIZE option dictates how time-sensitive your
passcode is. A 1 means that only the precisely current passcode,
as dictated by the system clock, will be acceptable. Each increase
of two means that an extra passcode before and after the current
one is acceptable. Setting this to 17, the value used if you take the
google-authenticator suggestion of allowing a four-minute win-
dow, means that the passcode for the current time, plus eight earlier
codes and eight later ones, is acceptable.

The DISALLOW_REUSE option means that each passcode can be
used once and only once.

The file ends with the user’s remaining one-time passcodes. While
it might be tempting to add your own one-time codes to this file, GA
performs additional verification on the emergency codes. Adding
00000001 to the end of the file won’t work. Plus, the act of editing an
emergency code invalidates the remaining emergency codes.

Now that we’ve secured remote access, let’s consider something
useful to local users.

123

Chapter 10: Console Access with SSH Keys
Sysadmins have a morning routine. After caffeine, pants, more caf-
feine, and staggering into the office, we slump in front of our worksta-
tion. We log on with a username and password. The majority enter our
SSH passphrase and load our keys into an SSH agent. At that point we
can start work. This requires authenticating to our workstation twice:
once with a username and password, and once with a username and
SSH key.

The pam_ssh module integrates SSH key management with the
login process. A user can go to their workstation and log in with
only their SSH key. Rather than authenticating against /etc/passwd,
the user authenticates with the SSH private key in their account. On
successful authentication, pam_ssh starts an SSH agent and stores the
decrypted private key in the agent.

Unlike other PAM modules discussed in this book, pam_ssh is
most useful for workstations, and then only select ones. You certainly
wouldn’t want to authenticate to a server based on SSH key files stored
on that server. Typical users should never offer passphrases to a remote
server. You probably wouldn’t want to have this functionality on the
salesperson’s machine. But many sysadmins find pam_ssh quite conve-
nient on their personal laptops.

Chapter 10: Console Access with SSH Keys

124

Pam_ssh provides service to the auth and session types. Used in
an auth policy, pam_ssh prompts the user for a passphrase. It attempts
to decrypt the user’s private SSH keys with that passphrase, much as
ssh(1) or ssh-add(1) do. If the passphrase works, the module returns
PAM_SUCCESS. Otherwise, the module fails. In a session policy,
pam_ssh starts an SSH agent for the user and adds the key to the
agent.

FreeBSD includes pam_ssh by default. Centos has a pam_ssh
package, while Debian offers a libpam-ssh package. These modules are
not only packaged differently; they’re different code. FreeBSD im-
ported the original pam_ssh and made improvements. That code was
extracted from FreeBSD and forked into slightly different versions for
CentOS and Debian. Each supports different features. We’ll cover each
operating system’s pam_ssh separately.

Additionally, each operating system uses pam_ssh differently.
We’ll use this module as an opportunity to explore how a very similar
module can be configured with entirely different PAM statements and
produce very different behavior.

All of the versions of pam_ssh we cover support the try_first_pass,
use_first_pass, and debug options.

One Module, Different Policies

All three of our target platforms deploy pam_ssh differently.
CentOS does not offer any suggestions on placing pam_ssh state-
ments. FreeBSD includes pam_ssh in the default install. Statements
for pam_ssh appear in FreeBSD’s standard configuration files, but
they’re commented out. Debian’s libpam-ssh package not only installs
pam_ssh, but also adds PAM statements to enable the module.

We’ll consider the simpler FreeBSD case first, then Debian.

Chapter 10: Console Access with SSH Keys

125

FreeBSD and pam_ssh

FreeBSD offers examples of enabling pam_ssh systemwide and in
individual services. I don’t want to use pam_ssh to authenticate to the
FTP server on my workstation, or over a serial line, so I won’t enable it
systemwide. I do want to use it during a graphical console logon, how-
ever. The file /etc/pam.d/xdm has commented-out entries for pam_ssh.
Uncommenting them gives us these auth and session policies.

auth sufficient pam_ssh.so no_warn try_first_pass
auth required pam_unix.so no_warn try_first_pass
session required pam_ssh.so want_agent
session required pam_lastlog.so no_fail

The auth policy has only two statements. The first, pam_ssh, is suf-
ficient. The logon will prompt the user for their SSH key’s passphrase.
If the passphrase is correct, the sufficient statement means that access
is immediately granted. The no_warn flag disables warnings. and The
try_first_pass flag tells pam_ssh to try any earlier password. As this is
the first statement in the policy, there won’t be an earlier password.

The second auth statement, for pam_unix, is for traditional Unix
authentication against /etc/passwd. This auth rule gets triggered only
if pam_ssh fails. With the try_first_pass argument, this module at-
tempts to use the previously entered SSH key passphrase as a Unix
system 	password. If you accidentally enter your password instead of
your passphrase, the system lets you in.

Taken together, these mean that the user is first prompted for a
username and an SSH passphrase. If he doesn’t enter the correct pass-
phrase, he’s prompted for a username and password.

In the session policy, the pam_ssh module sets up the user’s SSH
agent. The want_agent option is FreeBSD-specific, and is discussed in
the FreeBSD section. The session policy also performs logging with
pam_lastlog.

Chapter 10: Console Access with SSH Keys

126

Other X managers, such as Gnome’s gdm, will need similar PAM
rule entries in their /usr/local/etc/pam.d files.

For a completely different take on deploying pam_ssh, consider
Debian.

Debian and pam_ssh

When you install libpam-ssh on Debian, the package auto-
matically adds pam_ssh rules to /etc/pam.d/common-auth and
/etc/pam.d/common-session. This enables SSH key authentication for
every service that uses the common rules. If that host runs Telnet or
FTP servers, they’ll authenticate against the user’s SSH key and trans-
mit the user’s passphrase across the network in clear text.19

Here’s Debian’s /etc/pam.d/common-auth, with the comments
removed. While Debian admins should read those comments, we can
study the PAM policy without them.

auth [success=1 default=ignore] pam_unix.so nullok_secure
auth requisite pam_deny.so
auth required pam_permit.so
auth optional pam_ssh.so use_first_pass

The first statement calls pam_unix to perform traditional authenti-
cation against the password file. It uses extended Linux controls rather
than standard PAM controls. If the user enters a correct username
and password, PAM skips one statement in the policy. On any other
response, the pam_unix module is ignored and we fall through to the
second statement.

19	 Just to be clear: this is bad. Of course, if you’re providing telnet
services, you’re pretty much doomed anyway.

Chapter 10: Console Access with SSH Keys

127

The second statement calls pam_deny, which summarily rejects
any authentication attempt. It’s a requisite rule, so the rejection takes
place immediately. At first glance, this looks ridiculous—why au-
tomatically reject absolutely everything right near the beginning of
the policy? The only way to reach the statement is by failing to pass
pam_unix’s password authentication, however. If the hapless user suc-
cessfully authenticated in the first statement, the authentication policy
skips this step.

The third statement uses pam_permit. If the user successfully
authenticates with a username and password in rule one, they get
dumped here. It’s a required rule, but a call to pam_permit always
succeeds. The first three statements, taken as a whole, mean “the user
must authenticate with a username and password, or their login is
rejected.”

The fourth statement calls the pam_ssh module. It’s optional—the
user does not have to enter a correct SSH passphrase to log on. A user-
name and password are sufficient. The standard Debian pam_ssh state-
ment shown uses the use_first_pass option, though. This tells PAM to
recycle the password the user entered earlier, and feed it to pam_ssh. If
the password doesn’t work with pam_ssh, don’t prompt again.

The upshot is, Debian’s standard configuration assumes that your
SSH passphrase is the same as your password. Long-time SSH users
experimenting with pam_ssh on Debian will find this surprising.
Passphrases should be much longer than passwords: that’s why they’re
phrases and not words.

If you’re using pam_ssh on Debian, and don’t want to use a
single word as your SSH passphrase, you can either remove the
use_first_pass option from the pam_ssh auth statement or change
your password to be your passphrase. Debian lets you have very long
passwords.

Chapter 10: Console Access with SSH Keys

128

Now let’s take a quick look at the session rules.

session [default=1] pam_permit.so
session requisite pam_deny.so
session required pam_permit.so
session required pam_unix.so
session optional pam_ssh.so
session optional pam_tmpdir.so

The first three statements are similar to the first statements in the
auth policy. There’s a requisite pam_deny, but you literally can nev-
er hit it. The real rules begin with the fourth statement, which calls
pam_unix to set up the user’s environment. Rule five, for pam_ssh,
enables the user’s SSH agent. The final statement calls pam_tmpdir to
configure a secure temporary directory for the user.

Comparison

Why do FreeBSD and Debian have such wildly different policies for a
similar function? Part of this is because Debian’s policies are designed
to be friendly for the pam-auth-update(8) PAM configuration tool.
FreeBSD assumes you’ll be editing your own PAM rules, and hence
you understand what each type of statement does.

Another key difference, though, is that the operating system pack-
agers make different assumptions about how the module will be used.
FreeBSD’s developers assume that authentication via the user’s SSH
key is sufficient, and entirely skip authenticating against the system
password file. Debian, on the other hand, requires the user to authen-
ticate against the password file—but it assumes the user’s passphrase is
the same as their password.

The real problem here is the word “assumes.”
If you hear about a cool PAM module and try to deploy it, you

must carefully check your assumptions, the assumptions of the module
authors, and the assumptions made by the folks packaging the module

Chapter 10: Console Access with SSH Keys

129

for your operating system. If you’re using third-party documentation,
check the author’s assumptions as well. The only way to truly under-
stand how a module works is to carefully read the PAM policy, state-
ment by statement. I had deployed FreeBSD’s pam_ssh several times,
but the first time I tried pam_ssh on Debian it drove me to the edge of
madness20 until I carefully unraveled the PAM configuration.

Assumptions with PAM will ruin your day, your week, your every-
thing until you carefully dissect your configuration.

Speaking of assumptions: you also can’t assume that modules
named X are the same between platforms, even if they have similar
functions. The pam_ssh module differs between FreeBSD, CentOS,
and Debian, as we’ll see shortly.

SSH and pam_ssh

A proper SSH key has a passphrase several words long or longer.
During normal use, you type a passphrase only rarely. When you’re
first experimenting with pam_ssh, however, you can expect to type the
passphrase repeatedly. I recommend creating a testing-only SSH key
with a simple, easily typed passphrase for use while figuring out your
pam_ssh configuration. Don’t install the test key on any servers. Once
you have pam_ssh working as desired, erase the test key.

The next question you might have is, did my login successfully
decrypt my key and add it to my agent? On systems like Debian that
assume your password is your passphrase, that’s an important detail.
Check the keys in your agent with ssh-add –l.

20	 Okay, fine. “…drove me to this quaint little town called
Screaming Rage, about ten miles into Madness, and shoved me out of
the car without slowing down.” Happy now?

Chapter 10: Console Access with SSH Keys

130

$ ssh-add -l
2048 8c:f9:2d:…:91 testlab 2016-02-01 RSA

From here, manage your SSH session and keys normally.
When using SSH passphrases for authentication, a key without a

passphrase is like an account without a password. Pam_ssh normally
ignores keys without passphrases: it won’t use them for authentication
and it won’t add them to the SSH agent.

If you want to permit authentication using a key without a pass-
phrase, use the nullok option in the pam_ssh auth statement. All three
pam_ssh versions support nullok. Permitting authentication using
passphrase-free keys is a terrible idea. It’s even worse than allowing an
account without a password, because that passphrase-free key might
grant access to other hosts.

All of these pam_ssh implementations allow logons with the
private key file $HOME/.ssh/identity. This key file is used for version
1 of the SSH protocol. This version isn’t merely obsolete—it is actively
broken. Anyone who can capture your traffic can decrypt it. We aren’t
quite at the stage of “if you’re running SSHv1, turn it off and enable
Telnet; it might be insecure, but it doesn’t pretend to be secure,” but
that day is coming quickly. If you have an old SSHv1 key lying around,
verify that none of your SSH servers support SSHv1, double-check that
your modern SSH keys are installed everywhere, and relegate your
identity key to backup.

No pam_ssh implementation supports the
AuthorizedKeysCommand used by sshd(8). The
AuthorizedKeysCommand option provides only public keys, not
the private keys used for authentication. Your private keys belong on a
workstation, not on the network.

Chapter 10: Console Access with SSH Keys

131

FreeBSD pam_ssh

FreeBSD ships with pam_ssh installed, and many FreeBSD PAM
configurations in /etc/pam.d have commented-out auth and ses-
sion pam_ssh entries. Some of these strike me as rather odd (using
pam_ssh to authenticate FTP, thus transmitting your passphrase in
clear text?), but none of them are mandatory. Activating those rules
for login attempts in /etc/pam.d/login or /etc/pam.d/system changes
the user’s login prompt.

login: mwl
SSH passphrase:

Enter your SSH passphrase. The pam_ssh module will try to de-
crypt every standard key file in your .ssh directory: id_ecdsa, id_dsa,
id_rsa, and identity. If you type the passphrase correctly, the suffi-
cient control says “Login is permitted, end the policy now!” and you
get access.

Pam_ssh supports the common debug, use_first_pass, and
try_first_pass options discussed in Chapter 1.

OpenPAM SSH Agent

When pam_ssh decrypts a user’s keys, the session pam_ssh statement
starts an SSH agent and adds the decrypted key to the agent. But if
pam_ssh cannot decrypt any keys, it doesn’t start an agent. Instead,
PAM proceeds directly to the next statement in the session policy. The
end result is that if a user logs on with an SSH passphrase, he gets an
SSH agent. If he logs on with a password, he gets no SSH agent.

The sysadmin might want users who log on with a password to
unilaterally get an SSH agent, though. Adding the want_agent option
to the pam_ssh session statement triggers starting an SSH agent at
logon, even without loading any keys into it. The want_agent option
appears in the commented-out FreeBSD statements.

Chapter 10: Console Access with SSH Keys

132

Key Selection

FreeBSD’s pam_ssh automatically tries to decrypt the key files
identity, id_rsa, id_dsa, and id_ecdsa in the user’s $HOME/.ssh
directory. Keys with different names are not decrypted by the login
process.

You cannot remove any of these keys from pam_ssh’s check. For
that you’d need to use a different version of pam_ssh, such as that
found in CentOS.

CentOS pam_ssh

CentOS’ EPEL repository includes a pam_ssh package. Unlike
FreeBSD and Debian, CentOS doesn’t include any PAM policy state-
ments with the package. You must decide how to use pam_ssh, and
create rules for your auth and session policies.

Here, I’ve added pam_ssh to /etc/pam.d/login, the PAM configu-
ration for plain text console logins for CentOS 7.2. We’ll start with the
auth policy.

auth [user_unknown=ignore success=ok ignore=ignore \
 default=bad] pam_securetty.so
auth [success=1 default=ignore] pam_ssh.so
auth substack system-auth
auth include postlogin

The first statement in the auth policy is the usual pam_securetty
rule checking for a secure terminal.

The second statement inserts pam_ssh into the policy. Rather
than using a standard control, however, I use Linux-PAM extended
controls. If pam_ssh returns anything other than PAM_SUCCESS, we
ignore pam_ssh and the policy proceeds normally. If a user success-
fully enters her passphrase and pam_ssh can decrypt the user’s private
key, PAM skips the next rule.

Chapter 10: Console Access with SSH Keys

133

The next rule is the substack for normal system authentication.
Giving pam_ssh a working passphrase lets the policy skip the entire
normal Unix-style authentication process.

The last rule includes the normal post-login processing. No matter
if the user logged on with a passphrase or a password, CentOS per-
forms its logging and accounting.

The session rules are simpler. Put your pam_ssh statement right
before including the system-auth file, so that your SSH agent starts
before the rest of your environment gets set up. It really could go any-
where in the session policy after the pam_selinux.so open rule.

…
session optional pam_ssh.so
session include system-auth
…

At a PAM level, you’re ready.
On modern CentOS, though, you’re almost certainly us-

ing SELinux. If you have trouble with your SSH agent, check
/var/log/secure. Permissions errors on starting your agent are almost
certainly related to SELinux. Chapter 6 discusses fixing SELinux-relat-
ed PAM issues, using pam_ssh as an example.

CentOS pam_ssh Login Prompt

Unlike OpenPAM, CentOS’ pam_ssh doesn’t present the user with
a “passphrase” prompt. Users see the same Password: prompt that
always appears. CentOS makes pam_ssh all stealthy. The user needs to
know that entering their SSH passphrase is an option.

With the statements given earlier this section, a user who doesn’t
enter a passphrase has their authentication attempt fall through to the
system-auth substack, where pam_unix’s try_first_pass option means
it will try to use whatever the user entered as a password.

Chapter 10: Console Access with SSH Keys

134

Choosing Key Files

Specify which SSH private key files pam_ssh attempts to decrypt with
the keyfiles option. CentOS defaults to checking the id_dsa, id_rsa,
and identity files. The identity file is used for only the long-broken
SSH version 1 protocol, and I would encourage you to disable it in
pam_ssh.

auth [success=1 default=ignore] pam_ssh.so \
 keyfiles=id_dsa,id_rsa

You can add non-standard keys files here as desired.
If you want sophisticated key selection, check out Debian’s

pam_ssh.

Debian pam_ssh

Debian offers pam_ssh in the libpam-ssh package. We discussed
Debian’s pam_ssh policy in length earlier this chapter, so let’s plunge
straight into how the module works. Remember that Debian’s default
pam_ssh configuration expects your SSH passphrase to be the same as
your password, though.

The interesting thing about Debian’s pam_ssh is that it offers users
great control over which keys can be used for authentication and
which keys get added to the SSH agent.

Debian pam_ssh Key Selection

Debian’s pam_ssh ignores all the usual key files, and in-
stead relies on the directories $HOME/.ssh/login-keys.d and
$HOME/.ssh/session-keys.d. These directories don’t exist by default;
the user must create them.

The login-keys.d directory contains SSH private key files that can
be used for authentication. Files here can be the actual private keys, or

Chapter 10: Console Access with SSH Keys

135

symlinks to the key files. Here I go into my login keys directory and
link to my standard SSH key.

$ cd .ssh/login-keys.d
$ ln -s ../id_rsa

When I log onto the system, pam_ssh checks this directory. It at-
tempts to use the user-provided password to decrypt any private keys
it finds. It adds any keys it can decrypt to the user’s SSH agent.

The session-keys.d directory also contains key files or symlinks
to keys. Unlike files in login-keys.d, though, pam_ssh will not use
these key files for authentication. Once the user authenticates, how-
ever, pam_ssh attempts to use the password to decrypt the keys in the
session directory. It adds decrypted keys to the agent.

Bypassing Passwords

Maybe you don’t want a long password, instead relying on the pass-
phrase alone for console access. This would let you separate authenti-
cation methods for clear-text protocols like FTP from logons via SSH
or the console. You can accomplish this by rearranging Debian’s auth
policy.

auth sufficient pam_ssh.so
auth [success=1 default=ignore] pam_unix.so nullok_secure
auth requisite pam_deny.so
auth required pam_permit.so

Here I’ve moved the pam_ssh rule to the top of the auth policy,
even before pam_unix. I could use a Linux-PAM extended control
much like the pam_unix statement does, but sufficient expresses my
desired behavior.

Actually, as I’m manually editing this file and thus making it inel-
igible for automated management, I’m more likely to redo the entire
policy and remove statements that can never be hit.

Chapter 10: Console Access with SSH Keys

136

auth sufficient pam_ssh.so
auth required pam_unix.so nullok_secure

If the user cannot authenticate with an SSH key, they must au-
thenticate with a password. I find this much easier to comprehend. On
my personal workstation, I might even make pam_ssh required and
completely ditch the pam_unix rule.

Other people aren’t as security-conscious as I am, though. Their
machines need something to make sure they have a decent password,
as we’ll see in the next chapter.

137

Chapter 11: Password Quality Checks
The word password is a terrible password. Everybody knows that, ex-
cept users. Several PAM modules let you impose quality standards on
your passwords to prevent users from using such obviously bad pass-
words. These quality checkers won’t eliminate bad passwords, but will
require users to be much more creative in creating bad passwords.

While everyone agrees that password makes a ghastly password,
the qualities that make a password good are a subject of contentious
debate. Even otherwise calm and rational sysadmins discussing pass-
word quality measures with other calm and rational sysadmins have
been known to have their quiet and sensible discussion escalate into
a knife fight. Some entirely object to the concept of password quali-
ty checking as it’s used today. For this reason, we won’t discuss what
characteristics make a password good. Instead, we’ll cover PAM mod-
ules that allow you to inflict your particular prejudices on your users.

The most common password quality checking module is
pam_passwdqc. CentOS 7 eliminated pam_passwdqc, replacing
it with pam_pwquality. Debian has packages for both. We’ll use
pam_passwdqc to explain the configuration and concepts of password
quality checking, then briefly touch on pam_pwquality.

Chapter 11: Password Quality Checks

138

Configuring Password Checks

Test a password’s quality when the user changes the password. This
makes the quality check one of the very few functions that belongs in a
password policy, like so.

password requisite pam_passwdqc.so
password required pam_unix.so

On most systems, passwd(1) has its own PAM configuration,
/etc/pam.d/passwd. Changes in the system default file won’t affect
passwd(1), unless /etc/pam.d/passwd explicitly includes the default.

When pam_unix is satisfied that the password should change, it
alters /etc/passwd and related files. Place any password quality check
before the pam_unix statement, so the password is audited before
being changed.

Password Rotation

The question “how often should users change passwords?” is inti-
mately tied to password quality checkers. Many organizations require
changing passwords at regular intervals. Others argue that requiring
password changes is more insecure than leaving them unchanged.
Perhaps the password should only be changed upon first login.

You don’t set password expiration policies within PAM, but a
correctly configured PAM needs to respect password expiration. I’ve
seen more than one LDAP-based network that doesn’t reject expired
passwords.

BSD systems manage password lifespan globally in
/etc/login.conf and for individual users with pw(8). Linux systems
mostly use chage(8). Consult your operating system manual for details
on configuring password lifespans.

Chapter 11: Password Quality Checks

139

Quality Concepts

All password quality checkers share certain common concepts.

Character Classes

No, not “fighter,” “cleric,” “thief,” and so on. Password checkers break
possible characters in a password into four different classes: lower-case
letters, upper-case letters, numbers, and every other ASCII symbol.
A fifth character class exists for non-ASCII characters, but most of us
can’t easily type those. You can require a user’s passwords to contain
up to four classes, and adjust length requirements based on how many
classes a proposed password contains.

Many users build their passwords using a common word as a base.
If the sales guy must change his password every month, he might just
increment a number at the end, replacing hamster1 with hamster2.
Password checkers check for substrings in common between the old
and new passwords. You can assign the size of a substring. These
checks don’t record old passwords—remember, a user must provide
their old password before they can enter a new one, so the checker has
access to both. These substring checks won’t work if root barges in
and changes the user’s password.

Maximum Password Length

In past decades, Unix-like systems had a maximum password length
of eight characters. This seems absurd today, but was necessary for
the traditional DES password hashes. Even today, add-on system
services might have maximum limits on password length. And if you
share password files between systems, one of those systems might still
use traditional hashes. You need to set a maximum length on system
passwords. You also must read the password checker manual page very
carefully.

Chapter 11: Password Quality Checks

140

If you’re running software that has a maximum password length,
get the software fixed or replace it. Systems using traditional password
hashes are probably decades obsolete, mission-critical, minimally
funded, and so poorly understood that nobody dares touch them.
Large enterprises and governments are the worst offenders here. At-
tempting to replace the system will either end your career or, if you’re
successful, crown you Dark Lord of the IT Department.21

pam_passwdqc
The pam_passwdqc module appears almost everywhere except in
recent versions of CentOS, and has long been the standard tool for
checking the quality of new passwords during password changes. The
pam_passwdqc module lets you define password length requirements,
the number of characters that must differ between old and new pass-
words, the type of characters that must be included in a password, and
more.

Enabling and Configuring
Both Debian and FreeBSD use pam_passwdqc. The only real dif-
ference between them is that FreeBSD requires any options to be
placed in the PAM configuration file, while Debian lets you put
pam_passwdqc options in a separate file, passwdqc.conf with the con-
fig option.

password requisite pam_passwdqc config=/etc/passwdqc.conf

The actual configuration options that appear in each are identical,
however. We’ll show examples from both.

Once you enable pam_passwdqc, any time anyone tries to change
any password they’ll have to pass quality checks first. You can relax
this strictness with the enforce option.

21	 You might be a nice person when you start, but the actions
needed to replace such a system will transform you into a Dark Lord.
That’s just how business works.

Chapter 11: Password Quality Checks

141

If you set enforce=users, the password checks apply only to
unprivileged users. The root user can assign a user an inadequate
password. They’ll get a warning, but the password will get changed.

If you set enforce=none, pam_passwdqc prints password re-
quirements, warnings, and hints but doesn’t enforce them.

Here I tell pam_passwdqc to allow root to violate password stan-
dards.

password requisite pam_passwdqc.so enforce=users

If I’ve defined a Debian configuration file, this entry can appear on
a line by itself.

enforce=users

Now, when the boss calls complaining that GolfMaster is not an
acceptable password, I can become root and set it for her.

I discourage you from using enforce=none, except perhaps
during a warning period as you’re implementing new password stan-
dards. Voluntary standards are ignored standards.

pam_passwdqc Complexity and Length

Pam_passwdqc uses character classes to dictate the minimum accept-
able length of a password. The fewer character classes a password has,
the longer the password must be. By default, a password that contains
only two classes of characters must be 24 characters long. A password
that includes three classes of characters must be eight characters long,
while including all four character classes reduces the minimum length
to seven characters.

The complexity checks have two exceptions. A capital letter at
the beginning of the password doesn’t count as an additional charac-
ter class. Neither does a number at the end. The password Hamster1
counts as one character class, whereas 1hamsteR contains three. You

Chapter 11: Password Quality Checks

142

can explain this to your users, or just tell them that capitals and num-
bers need to be in the middle of the password to count. They’ll curse
your name either way.

Set the minimum length of a password of each type with the min
option. This option requires five numerical, comma-separated argu-
ments. Any of these arguments can also be set to disabled to auto-
matically reject passwords of that type.

The first argument dictates the minimum length of passwords with
only one character class. This defaults to disabled, making pam_
passwdqc reject any password made of only one character class.

The second argument gives the minimum length of passwords
with two character classes that aren’t passphrases. It defaults to 24.

The third argument gives the minimum length, in characters, of
passphrases. We discuss passphrases in the next section. Passphrases
default to a minimum length of 11 characters.

The fourth argument sets the minimum length of passwords with
three character classes. This defaults to eight.

Lastly, the fifth argument gives the minimum length of passwords
with four character classes. The default is seven.

This is a weird order; why use it? The arguments are ordered by
length. A password with only two character classes needs to be really
long to be secure. A passphrase can be a little shorter than that. Pass-
words with three or four character classes can be shorter still. These
numbers must decrease, or pam_passwdqc will die with an error.

You can also set a maximum length with the max option, which
defaults to 40, but passwords that are too long aren’t generally an issue.

Here we disable passwords with only one or two character classes.
Passphrases have a minimum length of 16 characters. Passwords with
three character classes have a minimum length of 10, while passwords
with four character classes have a minimum length of nine.

Chapter 11: Password Quality Checks

143

password requisite pam_passwdqc.so \
 min=disabled,disabled,16,10,9 max=80

I’ve defined a password’s maximum length as 80, just to annoy that
one guy from Sales who’s read too many Neal Stephenson books and
thus thinks he understands security.

Passphrases

Instead of a single password, you might set your password to a phrase
like Lucas needs gelato! This is a passphrase, a series of words instead of
a single word. Surprisingly, longer passphrases might actually be more
secure than shorter passwords containing random characters. For one
thing, your users won’t write them down as often. You can test pass-
phrases with pam_passwdqc.

Another advantage to passphrases, from the user’s perspective, is
that they don’t need to have multiple character classes. A passphrase
like correct horse battery staple contains only one character class but
passes the quality check.

The passphrase option gives the minimum number of separate
words that must be included for the password to be treated as a pass-
phrase. It defaults to three. If a passphrase doesn’t have enough words
for pam_passwdqc to treat it as a passphrase, it’s merely a password
that includes spaces and is quality-checked as such.

Here I’ve used Debian’s passwdqc.conf to require that passphrases
be four or more words.

passphrase=4

Requiring more words in a passphrase will probably, but not cer-
tainly, drive users to create longer passphrases.

Chapter 11: Password Quality Checks

144

Password Similarity

The pam_passwdqc module helps discourage users from using similar
passwords with the match and similar options.

When a user changes his password, pam_passwdqc checks for
common substrings within the password. It can recognize these
common strings backwards and forwards, such as hamster1 versus
1retsmah, and in different cases. The match option gives the number of
characters that it looks for in such a matching string. The default, four,
looks for common strings of four or more characters between the old
and new passwords.

match=4

While these checks are needed to keep users from using predict-
able password schemes, they can produce unexpected results. Consid-
er changing the password !meowing6 to homeowner!AtLast. The user
might be thrilled to have finally bought a home and have adequate
space for his half-dozen cats, and at first glance these are both ade-
quate passwords—but both contain the string meow.

To turn off these checks, set the option similar to permit. It de-
faults to deny.

similar=permit

Disabling the similarity check is either a bad idea, or a terrible
idea.

While pam_passwdqc has additional options, they mostly manage
edge cases when you want to tweak how the policy as a whole oper-
ates.

pam_pwquality

The pam_pwquality module takes a more complex approach to pass-
word quality. In addition to setting the requirements for password

Chapter 11: Password Quality Checks

145

length and different character classes, it has a “credits” system that
allows a shorter password if that password follows good practices. The-
oretically, pam_pwquality can identify poor password choices.22 (This
might sound familiar to older sysadmins, as pam_pwquality takes
many concepts from the venerable module pam_cracklib.)

Common pam_pwquality Configuration & Behavior

The common options use_first_pass, try_first_pass, and debug work
with pam_pwquality. Make copious use of the debug option when
you’re first experimenting with this module.

You’ll often see the local_users_only option, telling the module to
only check passwords for users with accounts in the local machine’s
password file.

Use the retry option to set how many times pam_pwquality will let
the user try to create an acceptable password. Once the user has tried
and failed this many times, pam_pwquality throws them out.

Finally, while the authtok_type option looks impressive, it only sets
a user-visible string to say what kind of password is getting changed.
It’s normally blank.

The usual pam_pwquality statement looks like this.

password requisite pam_pwquality.so try_first_pass \
 local_users_only retry=3 authtok_type=

The pam_pwquality module rejects entire categories of password
out-of-hand. If the new password is the same as the old, with only a
change of case, it’s rejected. If it’s too small, or too much like the old
one, it’s rejected. If it’s a rotated version of the old password, such as
hamster1 and amster1h, it’s rejected. Finally, palindromes are utterly
unacceptable.

22	 Never underestimate a user’s ability to creatively make poor
choices

Chapter 11: Password Quality Checks

146

You can fine-tune some of these behaviors. We’ll start by establish-
ing minimum requirements, move on to the credits system, and then
cover options that apply to both. Other configuration options can go
either in a PAM statement, or in /etc/security/pwquality.conf.

Setting Password Requirements

You can set restrictions on the user’s password by setting a minimum
length, the number of character classes needed, and the minimum
number of each class of characters.

The minlen option sets the minimum length of the password.
Increasing the minimum length is easy, but pam_pwquality has
hard-coded lower limits. The minimum effective password length on
any system is probably six, but this might be reduced to four by re-
compiling. The default is eight.

The minclass option sets a minimum number of character classes
that must be in the password.

Set the minimum number of digits in a password with the dcredit
option. The ucredit option specifies the minimum number of upper-
case letters, while lcredit sets the minimum number of lower case
letters. Finally, ocredit sets a minimum number of other characters.
Specify minimums as negative numbers—positive values mean you’re
using the credits system. Here I’m putting specific requirements on
user passwords. For clarity, I’ve omitted the usual retry statements
and such. You’d certainly want to include them in production.

password requisite pam_pwquality.so minlen=8 min\
 class=3 dcredit=-2 ucredit=-2 lcredit=-2 ocredit=-2

This statement requires the user to have at least two digits, two
lower-case letters, two upper-case letters, and two other characters.
The minimum length is eight. While I’ve defined the minimum num-

Chapter 11: Password Quality Checks

147

ber of classes as three, that setting isn’t exactly used—the minimums
in each of the four classes outweigh the minclass statement.

Defined minimum requirements for passwords simplify attacks on
your system. If an intruder is trying to guess the passwords for your
system, he can skip all of the possible passwords that don’t meet your
password standards. To make life harder for attackers23, use the credits
system.

Password Quality Credits

The pam_pwquality credits system lets you set a minimum password
length, but then gives the user extra credit for including multiple dif-
ferent character classes. This gives flexibility in passwords, but permits
people to use shorter passwords if they have a greater variety of char-
acters.

Sysadmins have enough trouble explaining conventional password
policies to their users. I have never successfully explained credits to
users. In the real world, I find that credits are a bonus for the sysadmin
team, not regular users.

With the credits system, the user gets credit for each additional
character class that they include in their password. By default, each
character class gives one extra credit character. Consider the world’s
worst password, password. It’s eight characters long. The user gets one
extra credit for including lower case characters, so it’s scored as having
nine characters. If you set the minimum password length to nine char-
acters, password qualifies. (It gets rejected for other reasons, mind you,
but on length alone it works.)

Adding a capital letter lets the password be one character shorter,
such as pAsswor. Stick a number in there, and you can trim the pass-
word down to six: pAssw0. Six characters, plus one credit each for

23	 and users

Chapter 11: Password Quality Checks

148

including lower-case, upper-case, and digit characters. Remember,
without recompiling, pam_pwquality won’t accept passwords less than
six characters.

With the credits system, a user who doesn’t want to mix characters
doesn’t have to. A plain eight-character, lower-case password suffices.

When using credits, the options dcredit, ucredit, lcredit, and ocredit
still apply to digits, uppercase, lowercase, and other characters, respec-
tively. Rather than defining minimum numbers of characters of those
classes needed for a password, however, with credits they define the
maximum number of credits a user can get for including characters of
that type. Setting ocredit to 3 means that a user can get up to three
credits for having non-alphanumeric characters in her password. Each
defaults to 1.

Consider these /etc/security/pwquality.conf settings.

minlen=16
ocredit=3
lcredit=0

The minimum password length is 16 characters. The user gets
no extra credit for using lower case characters, but can have up to
three credits from non-alphanumeric characters. There are no special
settings for uppercase characters or digits, so they give a credit of one
each.

The CEO tries to use passwordpassword. On length alone, that
passes—16 characters. Adding an uppercase letter gives her credit for
one character, letting her trim the password to passworDpasswor. A
number gives her credit for one more character, reducing it to 14: pass-
w0rDpassw0. Yes, there are two digits, but the digits credit is capped at
one. She can get up to three credits for non-alphanumeric characters,
though. So passw0rD!@# is a mere 11 characters, but with the credits
has a scored length of 16.

Chapter 11: Password Quality Checks

149

Users who create complex passwords get rewarded with shorter
passwords.24

Common Options

These options apply whether you’re defining requirements or using
credits.

The difok option sets the minimum number of new characters in
the new password. This defaults to 5. The new password must include
at least five characters that don’t appear in the old password. If you
require long passwords, increase this.

The maxrepeat option sets the maximum number of times a char-
acter can be repeated in a row. The default is 0, disabling the check.
Setting this to 1 disallows having the same character twice in a row.

With maxclassrepeat, you can limit how many characters of a
particular class appear together. It’s normally set to 0, disabling the
check. Setting this to, say, 4, would disallow passwords containing ran-
dom-looking strings like alqkn or 81930, as they’re longer than 4. You
could use all of these characters, but you’d have to break them up with
other character classes in the middle.

The maxsequence option sets the maximum length of an increasing
or decreasing sequence, like abcde or 876543. It defaults to 0, disabling
this check.

If the gecoscheck field is set to any number other than 0,
pam_pwquality compares the password to the user’s /etc/passwd
entry. Matching any word longer than three characters in /etc/passwd
makes pam_pwquality reject the password.

24	 I reward most of my users by reducing the voltage on the ran-
dom electric shocks, but whatever works for you.

Chapter 11: Password Quality Checks

150

The badwords option can be set to a space-separated list of words
forbidden to appear in passwords. If you’re using this option, I highly
recommend using a configuration file rather than entering the whole
list in an /etc/pam.d file.

Finally, enforce_for_root tells pam_pwquality to impose restric-
tions even on the root account. Normally, root can assign a user’s
password to password if she pleases.

With pam_pwquality and pam_passwdqc, you can force your
users to create less awful passwords. Don’t expect them to thank you,
though.

151

Afterword
PAM is a powerful tool meant to simplify systems administration, and
instead it has bewildered, befuddled, and bedeviled sysadmins almost
since its inception. I should know. I’m one of the folks who spent years
trying to understand PAM. Every time I thought I knew what I was
doing, reality gave this great big belly laugh and said, “Oh, yeah?”

Reality is kind of a jerk. But anyway…
This is my tenth self-published technical book—or, as the spine of

the print edition says, number A. It’s my eighteenth tech book, and my
twenty-fifth book. It seems a good spot to say a couple of things that
need saying.

I’m amazed, gratified, and a little humbled by the mostly positive
reaction my readers have offered my work. Thanks to all of you, I’m
now making a living writing books on comparatively obscure comput-
ing topics. I’m very grateful for that.

But speaking of “making a living,” why would I write this book?
PAM is not a hot topic like ZFS. It’s not ubiquitous the way SSH is—
yes, most everybody in IT passes through PAM at some point in their
day, but not many people have to configure it. I wrote this book not
because I thought I’d make a fortune, but because I think the systems
administration community needs it.

I hope that this book saves you pain.
If not, I recommend aspirin, exercise, and doing something wholly

unrelated to computers until the agony fades. Yes, that might take the
rest of your life.

Sponsors
The following fine folks thought that this book was important enough
that they offered me financial support as I produced it. Ebook spon-
sors paid at least $20 for the privilege of getting their name in the
electronic version, while the people who sponsored the print edition
coughed up at least $100 to get their name in actual ink.

Thanks to everyone who contributed. While I don’t need
sponsorships, they unquestionably make my life much simpler. I spent
the money well, on stuff I really enjoy that’s bad for me. My sincere
thanks to you all.

Print Sponsors

Stefan Johnson
Hugh Brown
Wouter Clarie
Phi Network Systems
tanamar corporation

Never miss a new Lucas release!

Sign up for Michael W Lucas’ mailing list.
https://www.michaelwlucas.com/mailing-lists

More Tech Books from Michael W Lucas

Absolute BSD
Absolute OpenBSD (1st and 2nd edition)

Cisco Routers for the Desperate (1st and 2nd edition)

PGP and GPG
Absolute FreeBSD

Network Flow Analysis

the IT Mastery Series

SSH Mastery
DNSSEC Mastery

Sudo Mastery
FreeBSD Mastery: Storage Essentials

Networking for Systems Administrators
Tarsnap Mastery

FreeBSD Mastery: ZFS
FreeBSD Mastery: Specialty Filesystems

FreeBSD Mastery: Advanced ZFS
PAM Mastery

Relayd & httpd Mastery (coming soon!)

#	 ...90
@	 ... 76-77
*	 ...76
%	 ...76-77, 80
:	 ... 76-77
\	 ...21
-	 ...23
=	 ...71
<	 ...72
>	 ...72
~	 ...102, 117
!=	 ...71
~=	 ...71
!~	 ...71
>=	 ...72
<=	 ...72
%f	 ...102
%h	 ...84
%H	...84, 102
%s	 ... 83-84
%t	 ... 83-84
%u	83-84, 102
%U	... 83-84
$DISPLAY...................................51, 68
$EDITOR...68
$KRB5CCNAME..............................57
$SSH_CLIENT..................................68
${USER}...117
@include..31

AAA... 3
Access Control Lists.........................23
account.........20, 22, 30, 33, 36, 39, 45,
	 48, 54, 93, 96
AIX...5, 9
allow_local...83
allow_user_owned_authorized_
	 keys_file....................................103
Ansible.....................................103, 116
Antarctica..54
Apple....................................5, 9, 13, 36
Archchancellor..................................23
audit
	 with pam_unix...........................40
	 with pam_succeed_if................74
audit2allow.................................. 98-99
auth......................20, 22, 25-31, 33-37,
	 39-40, 42-43, 45, 54, 65, 72-73,
	 82, 84, 88-89, 102-103, 108, 116,
	 118-119, 130, 132, 134-136
authconfig(8).....................................12
authentication................................. 3-4
AuthenticationMethods............. 14-15
Authentication, Authorization,
	 and Accounting........................... 3
authorized_keys......................101-105
AuthorizedKeysCommand...........130
authorized_keys_command..........103

authorized_keys_command
	 _user..103
authtok_type...................................145

bad	...62, 64-65
badwords...150
bash(1)...75, 94
binding (control)............24, 29-30, 61
bindweed...19
blowfish..41
breathalyzer...................................5, 34
Brown, Hugh...................................153
BSD...........................8-9, 11, 46, 67, 91
BSD authentication............................ 7
butt-dialing......................................110

Canada...54
caffeine...123
capabilities...87
Carpenter, John.................................44
CentOS..................2, 10, 12-13, 30-31,
	 40, 42, 46, ... 54, 62, 65, 67, 71-73,
	 82, 96, 104, 109, 124, 132-134,
	 137, 140
chage(8)...138
ChallengeResponseAuthentication....
	 ...14
character classes......................139, 141
chroot...80
Clarie, Wouter.................................153
clock sensitivity...............................112
cockerel, black..................................... 1
codes........................ see Return Codes
Common Desktop Environment...... 6
common-auth...................................31
common-account.............................31
common-session-noninteractive....31
conffile..69
config..140
control.............................. 20-21, 23-31
core...78
counter-based passcodes...............110
cpu	...79
credits...............................145, 147-149
crond(8)...74
csh(1)..75

Dance Dance Revolution................... 5
Dark Lord of the IT Department.140
data...78
dcredit......................................146, 148
Dean...23
Debian...................2, 10, 12-13, 30-31,
	 41-42, 46, 54, 67, 71, 72-73, 82,
	 104, 109, 124, 126-129, 132, 137,
	 140-141
debug.................. 21, 33-34, 43, 82, 95,
	 104, 131, 145
debugging.................................... 81-86

deny.. 42-43
difok...149
die	 ... 63-64
DISALLOW_REUSE.....................122
Discworld..54
domain, pam_limits..................... 7-77
done.. 63-64
Dragonfly...13

echo_verification_code..................119
emergency codes....................120-121
enforce......................................140-141
enforcing..97
enforce_for_root.............................150
eq	 ...72
/etc/bash.bashrc................................69
/etc/environment..............................69
/etc/ftpusers.......................................87
/etc/group..39
/etc/limits.conf..................................75
/etc/login.conf...........................48, 138
/etc/master.passwd...........................39
/etc/nologin.......................................47
/etc/pam.conf.............................. 19-20
/etc/pam.d...........................19-20, 150
/etc/passwd.........39, 89, 123, 125, 149
/etc/passwdqc.conf.........140-141, 143
/etc/securetty...............................41, 46
/etc/security/limits.conf...................75
/etc/security/pam_env.conf....... 68-69
/etc/security/pwquality.conf..146, 148
/etc/shadow.......................................39
/etc/shelllist.......................................89
/etc/ssh/keys............................103-104
/etc/ttylist...89
/etc/ttys..46
expose_account................................35
expose_authtok.................................96
extended controls.........49, 61-65, 126

facilities..21
Feegles..92
file	
	 pam_echo...................................84
	 pam_google_authenticator....117
	 pam_listfile...........................88, 90
	 pam_localuser............................75
	 pam_ssh_agent_auth......102-103
fingerprint................................ 4, 12-13
Firefox..92
firewall...87
forward_pass...................................119
FreeBSD................. 2, 8, 10, 20, 31, 36,
	 54, 82, 104, 109, 124-126,
	 128-129, 132, 140
fsize...78
FTP.................. 22, 36, 51, 87, 125-126
ftpd...50
functions................................49, 57-59

GDM..72, 126
gecoscheck.......................................149
gene scans.. 5
Generic Security Services.................. 7
GID.............................58, 71-72, 76-77
git(1)...109
Google Authenticator.......................... 	
	 4, 17, 101, 107-122
	 clients................................112, 120
	 disaster recovery..............120-121
google-authenticator(1).......................
	 110, 113-115, 120-122
.google_authenticator..........................
	111, 114, 117, 121-122
grep(1).............................. 93-94, 98-99
group..76
group membership.........42-43, 87, 90
GSSAPI.. 7

hammer of “nope”............................25
hard limits...................................77, 80
hardware security token.......... 4-5, 22
home directory.................................71
$HOME/.ssh/identity.............130, 134
$HOME/.ssh/login-keys.d.....134-135
$HOME/.ssh/session-keys.d.134-135
HP-UX... 5

IAA... 3
IBM... 9
Identity, Authentication, and
	 Authorization............................... 3
ignore... 62-65
ignorenologin....................................48
in	 ...73
inactive...46
include statement........... 30-31, 65-66
ingroup...73
innetgr..73
iris scanner.. 4
IRIX.. 8
Irvine, Bryan..................................XIX
items... 49-54
	 extracting from PAM.......... 53-54
	 for pam_limits...........................75
	 for pam_listfile..................... 88-90

Johnson, Stefan...............................153

Kali Linux..12
kebab..92
Kerberos.............7-8, 15-16, 23, 26, 39
Keyboard-Interactive................. 14-15
keyfiles...134
ktrace..81

lawyer...85
lcredit.......................................146, 149
LDAP................................15-16, 29, 39

Lecturer in Recent Runes................24
libpam-ssh.......................................134
libqrencode..............................109, 113
Librarian..24
Lightweight Directory Access
	 Protocol.........................see LDAP
limit(1)...75
Linux......... 6-7, 11, 13, 36, 41, 67, 105
Linux-PAM.............7-9, 23, 29-31, 39,
	 41-43, 46-47, 52-53, 59, 61-67,
	 73, 84, 87
Loadable Authentication Module..... 9
local_users_only.............................145
locks..78
log	 ...95
logging...82
luser..43

match..144
max...142
maxclassrepeat................................149
maxlogins..............................76, 79-80
maxrepeat..149
maxsequence...................................149
maxsyslogins...............................76, 79
memlocks..78
min...142
minclass...146
minlen..146
module...21
module arguments............................21
module context.................................32
Mosiejczuk, KurtXIX
multi-factor authentication... 3-4, 101
MySQL...40

Name Service Switch.......................... 3
ne	 ...72
Neanderthal.......................................33
NetBSD..13
Network Information Service.see NIS
NFS...87
nginx..40
nice...79
NIS	...39, 87
nofile...78
nohost..46
nologin... 47-48
noskewadj..118
NoSQL...94
noterm..46
notin...73
notingroup...73
notinnetgr..73
noupdate..46
nowtmp..46
no_fail..125
no_fake_prompts..............................83
no_warn.................. 20-21, 34, 83, 125

nproc..75, 79
NSS... 3
ntpd(8)...108
nullok..20, 30, 32-33, 40, 83, 116, 130
nullok_secure....................41, 135-136

O’Connor, MikeXIX
OATH...111
ocredit......................................146, 148
ok	 ... 62-65
onerr... 88-91
One-time Passwords In Everything...
	 ...107
OpenBSD... 7
OpenIndiana....................................... 8
OpenPAM...............7-9, 30, 34, 36, 39,
	 42-43, 46-48, 67, 75, 91, 133
OpenSolaris.............................8, 11, 36
OpenSSH..................................... 13-15
Open Authentication.........see OATH
Open Group..................................6, 55
OPIE...107
optional (control)................24, 26-27,
	 30, 61, 63-64, 82, 85-86,
	 126-128, 133
Oracle...8, 42
Oracle Solaris....................................11
OS X.............................. 5, 9, 11, 13, 47

packet filters......................................23
palindromes....................................145
panic...120
pants...123
passphrase...............................142-143
password (type)............ 20, 22, 30, 36,
	 40, 44-45, 54, 138, 141, 145-146
passwords
	 empty..40
	 expiration.................................138
	 maximum length.....................139
	 rotated.......................................145
	 rotation.....................................138
	 similar.......................................144
pam_acct_mgmt...............................58
pam_authenticate.............................58
PAM_AUTHTOK............................52
PAM_AUTHTOK_PROMPT.........52
PAM_AUTHTOK_EXPIRED........55
PAM_AUTH_ERR...............55-56, 62
pam_auth_update(8)...............12, 128
pam_breathalyzer...........25-29, 31, 33
pam_chauthtok.................................58
pam_close_session...........................58
pam_console.....................................88
pam_conv..57
PAM_CONV.....................................52
pam_cracklib...................................145
PAM_CRED_EXPIRED..................55
pam_ddr...................................... 25-29

pam_debug..86
pam_deny.................28, 30, 44, 65-66,
	 126-128, 135
pam_echo.................................... 81-86
	 and PAM items.................... 83-34
pam_end..57
pam_env..........................30, 65, 67-71
pam_exec....................2, 17, 53-54, 81,
	85-86, 100
	 bugs...94
	 Linux-PAM.......................... 95-96
	 OpenPAM............................ 94-95
pam_faildelay....................................27
pam_fprintd................................30, 65
pam_genescan.......................25-29, 33
pam_getenv.......................................57
pam_getenvlist..................................57
pam_get_data....................................57
pam_get_item...................................57
pam_google_authenticator.................
	109, 116-119
pam_group.................................. 42-43
pam_hipster.. 5
PAM_HOST......................................51
PAM_IGNORE.....................56, 62, 64
PAM_INCOMPLETE......................62
pam_keyinit......................................30
pam_krb5..57
pam_lastlog.................. 20, 36, 46, 125
pam_limits.............................30, 75-80
pam_listfile.................................. 87-94
pam_localuser............................. 74-75
PAM_MAXTRIES............................56
PAM_MAX_RESP_SIZE.................96
pam_mkhomedir................32, 99-100
PAM_NEW_AUTHTOK_REQD......
	 ...56, 64-65
pam_nologin............................... 47-48
pam_oddjob_mkhomedir...............99
PAM_OLDAUTHTOK....................52
PAM_OLDAUTHTOK_PROMPT.52
pam_open_session...........................58
pam_opie...............................36, 83, 85
pam_opieaccess....................36, 83, 85
pam_passwdqc....4, 137-138, 140-144
pam_permit.........44-45, 126-128, 135
PAM_PERM_DENIED.............56, 94
pam_putenv......................................57
pam_pwquality...............137, 144-150
PAM_RHOST.............................51, 68
pam_rootok.................................45, 86
PAM_RUSER..............................51, 91
pam_securetty...............45-46, 62, 132
PAM_SERVICE................................50
PAM_SERVICE_ERR..........56, 62, 95
pam_setcred......................................58
pam_setenv.......................................57
pam_set_data....................................57
pam_set_item....................................57

pam_sm_*...59
PAM_SM_FUNCTION...................52
pam_ssh...........17, 67, 96-99, 123-136
pam_ssh_agent_auth................15, 17,
	 101-105, 109
pam_start...57
pam_succeed_if........30, 63, 65, 71-74
PAM_SUCCESS...................55, 61-62,
	 64-65, 74, 94, 101, 124, 132
pam_systemd..............................67, 80
PAM_SYSTEM_ERR.......................56
pam_tmpdir....................................128
PAM_TTY...51
PAM_TYPE.......................................52
pam_unix..................20-21, 30, 32-33,
	 36, 39-43, .65, 74, 82-83, 85, 119,
	 125-126, 128, 135-136, 138
PAM_USER...........................51, 90, 93
PAM_USER_PROMPT...................52
PAM_USER_UNKNOWN.......56, 62
pam_warn..............................53, 85-86
pam_wheel............................42-43, 90
PasswordAuthentication..........14, 119
Perl	... 2
permissive mode...............................97
Phi Network Systems.....................153
Pinette, John.. 7
policy.. 20-37
	 default................................... 35-36
POSIX.. 6
	 message queues..........................79
pp files..99
Pratchett, Terry.........23-24, 54, 84, 92
print..81
print(1)...115
priority...79
privileges..58
publickey..15
Puppet......................................103, 116
pw(8)..138

QR code reader...............................112
quiet..74, 95
quiet_fail..74
quiet_success.........................30, 72, 74

Radius..119
rate limiting.............................109, 115
RATE_LIMIT..................................121
readenv...70
required (control).......... 24-25, 30-31,
	 36, 43-44, ... 47, 54, 61-66, 69, 71,
	 73-74, 84, 88-89, 93, 105, 116,
	 118-119, 125-128, 135-136, 138
requisite (control)................24-26, 30,
	 36, 42, 61,63-66, 85, 126-128,
	 135, 138, 141, 145-146
reset..63
retry..145

return codes..........................49, 55-56
return_prog_exit_status..................95
RFC 4226...110
RFC 6238...110
rhost...89
rlogind(8)..19
root_only...42
RSA tokens......................................107
rsh(8)..19
rtprio..79
Russia...54

SASL... 7
/sbin/nologin.....................................72
Screaming Rage..............................129
Security Enhanced Linux....................
	 see SELinux
SELinux..............................96-100, 133
semodule(8)......................................99
Senior Wrangler................................24
sense... 88-90
serial line..102
service functions......................... 58-59
session....20, 22, 30, 36, 39, 45-46, 54,
	 69, 74, 133
seteuid..96
setroubleshoot...................................98
SGI	... 8
sh(1)...94
Shakespeare.....................................110
sha512..40
shadow...40
shell..71
shipping container............................54
showfailed..46
sigpending...79
silver, matrilineally inherited............ 1
similar.. 144
Simple Authentication and Security Layer... 7
Smørgrav, Dag-Erling................................. XIX
soft limits... 77
Solaris.......................... 5, 7, 8, 13, 19, 39, 67, 87
sponsors... 153
SSH7, 43, 47, 96-99, 101-105, 109,
	 ..111, 119, 123-136
SSHv1... 130
SSH agent.................26, 101-105, 123-136, 129
ssh key without passphrase......................... 130
sshd(8)..13-15, 50, 130
sshd_config.. 14
SSH_AUTH_SOCK..................................... 104
stack.. 78
stdout... 95
Strotmann, Carsten XIX
substack... 65-66, 132
substring..139, 144
sudoers... 104
sudo(8)............................ 31, 101-105, 109, 111

sufficient (control).................24, 28-30, 36, 40,
	 44-45, 61, 63-66, 73, 85-86, 102-103,
	 105, 119, 125, 131, 135
Sun Microsystems.....................................5, 8-9
su(1)... 50-51, 54, 88
swordfish.. 41
syslog(3)... 82
systemd(8)...23, 67, 80
/sys/class/tty/console/active.......................... 46

tanamar corporation.................................... 153
telnet...19, 126, 134
Time-Based Temporary One-Time
	 Passwords................................... see TOTP
time-based passcodes................................... 110
TOTP... 17, 107-122
truss	.. 81
trust (option)... 43
try_first_pass........ 11, 20, 30,32-33, 35, 40, 43,
	 83, 125, 131, 133, 145
tty	 .. 71
two-factor authentication................................ 3
type	...20-23
	 for pam_limits.. 75
	 for pam_exec.. 96

Ubuntu... 12
ucredit..146, 148
uid	30, 58, 71-72, 76, 96
ulimit(1)... 75
unlimited... 78
user	.. 117
userenv... 70
username... 76
user_readenv... 70
use_authtok... 40
use_first_pass.....11, 34, 43, 119, 127, 131, 145
use_mapped_pass... 35
Use_Login.. 14
Use_PAM... 14
use_uid... 74

/var/log/audit.log.......................................97-99
/var/log/auth.log... 82
/var/log/lastlog.. 46
/var/log/secure..................................82, 97, 133
/var/log/utx.lastlogin...................................... 46
/var/run/nologin... 47
virtual terminals... 89

want_agent..125, 131
wildcard..76-77
WINDOW_SIZE.. 122
XDG base directories..................................... 80
xkcd	.. 143

YP database... 92

	_GoBack
	Acknowledgements
	Chapter 0: Introduction
	Chapter 1: PAM Components
	Chapter 2: Common Modules
	Chapter 3: PAM Items, Codes, and Functions
	Chapter 4: Linux-PAM Extended Controls and Substacks
	Chapter 5: Popular Linux-PAM Modules
	Chapter 6: PAM Debugging
	Chapter 7: Arbitrary Files and Random Programs
	Chapter 8: SSH Agent Authentication
	Chapter 9: One-Time Passwords:
				Google Authenticator
	Chapter 10: Console Access with SSH Keys
	Chapter 11: Password Quality Checks
	Afterword
	Sponsors
	Acknowledgements
	Chapter 0: Introduction
	Prerequisites and Results
	What is Authentication?
	Multi-Factor Authentication
	Why PAM?
	PAM Limitations
	PAM Implementations
	PAM Variances
	PAM Commonalities

	PAM Management Tools
	Target Platforms
	CentOS
	Debian
	FreeBSD
	Other Platforms

	PAM and OpenSSH
	PAM, LDAP, and Kerberos
	Book Overview

	Chapter 1: PAM Components
	PAM Configuration Files
	PAM Policies
	Authentication Types
	PAM Controls
	Required
	Requisite
	Optional
	Sufficient
	Binding
	Include

	Modules and Arguments
	Module Context
	Module Arguments

	Common Module Flags
	debug
	no_warn
	use_first_pass
	try_first_pass
	use_mapped_pass
	expose_account

	Default Policies
	Policy Processing and Results

	Chapter 2: Common Modules
	Core Unix Authentication: pam_unix
	Detailed Logging with audit
	Empty Passwords
	Password File Configuration

	Group Membership
	Other pam_unix Options

	Allowing and Denying Requests
	pam_deny
	pam_permit

	Allowing Root
	Secure Terminals
	Login Accounting
	Preventing Logins

	Chapter 3: PAM Items, Codes, and Functions
	PAM Items
	PAM_SERVICE
	PAM_USER
	PAM_RUSER
	PAM_TTY
	PAM_HOST
	PAM_RHOST
	PAM_CONV
	PAM_AUTHTOK
	PAM_OLDAUTHTOK
	PAM_USER_PROMPT
	PAM_AUTHTOK_PROMPT
	PAM_OLDAUTHTOK_PROMPT
	PAM_SM_FUNCTION
	PAM_TYPE

	Reading Items with pam_exec
	PAM Return Codes
	PAM_SUCCESS (0)
	PAM_SERVICE_ERR (3)
	PAM_SYSTEM_ERR (4)
	PAM_PERM_DENIED (7)
	PAM_MAXTRIES (8)
	PAM_AUTH_ERR (9)
	PAM_NEW_AUTHTOK_REQD (10)
	PAM_USER_UNKNOWN (13)
	PAM_IGNORE (25)

	Functions
	PAM Setup and Resources
	Authentication Functions
	Account, Session, and Password Functions
	PAM Service Functions

	Chapter 4: Linux-PAM Extended Controls and Substacks
	Extended Controls
	Extended Control Actions
	Standard Controls in Extended Format

	Substacks

	Chapter 5: Popular Linux-PAM Modules
	Popular OpenPAM Modules
	User Environment: pam_env
	pam_env Configuration
	System Environment
	User Environments
	pam_env and Security

	Conditional Success: pam_succeed_if
	String Comparisons
	Numerical Comparisons
	List Comparisons
	User Group Membership
	Conditional Rule Processing
	Pam_succeed_if Options

	Local Users
	Limiting User Resources: pam_limits
	Limit Domains
	Limit Type
	Limit Items and Values

	PAM and Systemd

	Chapter 6: PAM Debugging
	PAM Logging
	Debugging with pam_echo
	Using pam_echo
	pam_echo Items
	Linux-PAM Message Files

	Debugging with pam_exec
	Debugging with pam_warn

	Chapter 7: Arbitrary Files and Random Programs
	Checking Files: pam_listfile
	Pam_listfile Items
	Pam_listfile Sense and File
	Pam_listfile Errors
	Pam_listfile and Changing Usernames
	OpenPAM versus pam_listfile

	Running Programs: pam_exec
	Configuring pam_exec
	Implementing pam_listfile in pam_exec
	Pam_exec versus Modules

	OpenPAM pam_exec
	Linux-PAM pam_exec
	PAM versus SELinux
	Is It SELinux?
	Creating an SELinux Policy
	SELinux and pam_mkhomedir

	Chapter 8: SSH Agent Authentication
	Installing pam_ssh_agent_auth
	Configuring pam_ssh_agent_auth
	Locating authorized_keys
	Key File Ownership
	Other Options

	Configuring sudo
	Pam_ssh_agent_auth and PAM

	Chapter 9: One-Time Passwords:
				Google Authenticator
	Installing Google Authenticator
	Google Authenticator User Features
	Passcode Types
	File Management
	Timing and Rate Limiting

	GA User Configuration
	Device Software
	User Configuration
	Scripting User Setup

	GA and PAM
	Central GA Management
	Time Skew Adjustment
	Passcode Display
	Simultaneous Passcode and Password Entry

	New Devices
	Disaster Recovery
	GA File Format

	Chapter 10: Console Access with SSH Keys
	One Module, Different Policies
	FreeBSD and pam_ssh
	Debian and pam_ssh
	Comparison

	SSH and pam_ssh
	FreeBSD pam_ssh
	OpenPAM SSH Agent
	Key Selection

	CentOS pam_ssh
	CentOS pam_ssh Login Prompt
	Choosing Key Files

	Debian pam_ssh
	Debian pam_ssh Key Selection
	Bypassing Passwords

	Chapter 11: Password Quality Checks
	Configuring Password Checks
	Password Rotation
	Quality Concepts
	Character Classes
	Maximum Password Length

	pam_passwdqc
	Enabling and Configuring
	pam_passwdqc Complexity and Length
	Passphrases
	Password Similarity

	pam_pwquality
	Common pam_pwquality Configuration & Behavior
	Setting Password Requirements
	Password Quality Credits
	Common Options

	Afterword
	Sponsors
	_GoBack

